

1

4

2

D Range Queries

- Denote query $\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$
- Idea
- Find all points with x-coordinates in $\left[x_{1}, x_{2}\right]$
- Of all these points, find all points with y-coord in $\left[y_{1}, y_{2}\right]$

Range searching
Given a set of points, preprocess them into a data structure to support fast range queries.

3

Towards 2D Range Trees

- Store points in a BBST by x-coordinate
- Use BBST to find all points with the x-coordinates in $\left[x_{1}, x_{2}\right]$
- Of all these points, find all points with y-coord in $\left[y_{1}, y_{2}\right]$

7

10

8

Towards 2D Range Trees

- Store points in a BBST by x-coordinate
- Use BBST to find all points with the x-coordinates in $\left[x_{1}, x_{2}\right]$
- Of all these points, find all points with y-coord in $\left[y_{1}, y_{2}\right]$

1D
A 1-dimensional range query with $[25,90]$

9

Towards 2D Range Trees

- Store points in a BBST by x-coordinate
- Use BBST to find all points with the x-coordinates in $\left[x_{1}, x_{2}\right]$
- Of all these points, find all points with y-coord in $\left[y_{1}, y_{2}\right]$

12

Towards 2D Range Trees

- Store points in a BBST by x-coordinate
- Use BBST to find all points with the x-coordinates in $\left[x_{1}, x_{2}\right]$
- Of all these points, find all points with y-coord in $\left[y, y y_{2}\right]$

They are sitting in $\mathrm{O}(\mathrm{Ig} \mathrm{n})$ subtrees

13

Towards 2D Range Trees

- Store points in a BBST by x-coordinate
- Use BBST to find all points with the x-coordinates in $\left[x_{1}, x_{2}\right]$
- Of all these points, find all points with y-coord in $\left[y_{1}, y_{2}\right]$

What is a good data structure for range search on y ?

14

The 2D Range Tree

- To simplify, we'll use BBSTs that store all data in leaves

Example: $P=\{1,3,4,7,11,13\}$

17

15
The 2D Range Tree

P is a set of point

RangeTree((P) is

- A BBST T of P on x-coord
- Any node v in T stores a BBST Tassoc of $P(v)$, by y-coord

Class work

- Show the BBST with all data in leaves for $P=\{1,2,3,4,5,6,7,8,9,10\}$
- Write pseudocode for the algorithm to build BBST(P) BuildBBST(P)

The 2D Range Tree

$P=$ set of points
Rangetree((P) is

- A BBST T of Pon x-coord
- Any node v in T stores a BBST Tassoc of $P(v)$, by y-coord

19

20

23

Every internal node stores a whole tree in an associated structure, on y-coordinate

Building a 2D Range Tree
21

25

The 2D Range Tree

- How much space does a range tree use?

Building a 2D Range Tree
How fast?

- Let $T(n)$ be the time of Build2DRT() of n points
- Constructing a BBST on an unsorted set of keys takes $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Then
$T(n)=2 T(n / 2)+O(n \lg n)$
- This solves to $O\left(\mathrm{n} \lg ^{2} \mathrm{n}\right)$

Building a 2D Range Tree

- Common trick: pre-sort P on y-coord and pass it along as argument
$/ \mathbb{P}_{x}$ is set of points sorted by x-coord, P_{y} is set of points sorted by y-coord Build $2 D R T\left(P_{x}, P_{y}\right)$
- Maintain the sorted sets through recursion
P_{1} sorted-by-x, P_{1} sorted-by-y
P_{2} sorted-by-x, P_{2} sorted-by-y
- If keys are in order, a BBST can be built in $\mathrm{O}(\mathrm{n})$
-We have
$T(n)=2 T(n / 2)+O(n)$ which solves to $O(n \lg n)$

26

The 2D Range Tree

- How much space does a range tree use?

Two arguments can be made:

- At each level in the tree, each point is stored exactly once (in the associated structure of precisely one node). So every level stores all points and uses $O(n)$ space $=>0(n \lg n)$
or
- Each point p is stored in the associated structures of all nodes on the path from root to p . So one point is stored $\mathrm{O}(\mathrm{lg} \mathrm{n})$ times $=>0(\mathrm{n} \lg \mathrm{n})$

The 2D Range Tree

- How do you answer range queries with a range tree, and how fast?
․ㅔN

31

32

35

33

3D Range Trees

$P=$ set of points in 3D

- 3DRangeTree(P)
- Construct a BBST on x-coord
- Each node v will have an associated structure that's a 2 D range tree for $\mathrm{P}(v)$
on the remaining coords

36

3D Range Trees
Size:

- An associated structure for n points u ses $~$
$O(n \lg n)$ space. Each point is
stored in all associated structures of all its ancestors $=>O\left(n l g^{2} n\right)$

Let's try this recursively

- Let $S_{3}(n)$ be the size of a 3D Range Tree of n points

Find a recurrence for $\mathrm{S}_{3}(\mathrm{n})$

- Think about how you build it you build an associated structure for P that's a 20 range tree; then you build recursively a $3 D$ range tree for the left and right half of the points
- $S_{3}(n)=2 S_{3}(n / 2)+S_{2}(n)$
- This solves to $O\left(n \lg ^{2} n\right)$

3D Range Trees

Build time:

- Think recursively
- Let $B_{3}(n)$ be the time to build a 3D Range Tree of n points
- Find a recurrence for B3(n)
- Think about how you build it : you build an associated structure for P that's a 2 D range tree; then you build recursively a 3D range tree for the left and
right half of the points
- $B_{3}(n)=2 B_{3}(n / 2)+B_{2}(n)$
- This solves to $O\left(n \lg ^{2} n\right)$

3D Range Trees
Query:

- Query BBST on x-coord to find $\mathrm{O}(\mathrm{lg} \mathrm{n})$ nodes
- Then perform a 2 D range query in each node

Time?

- Let $\mathrm{Q}_{3}(\mathrm{n})$ be the time to answer a 3D range query
- Find a recurrence for $Q_{3}(\mathrm{n})$
- $Q_{z}(n)=O(\lg n)+O(\lg n) \times Q_{2}(n)$
- This solves to $\mathrm{O}\left(\mathrm{lg}^{3} \mathrm{n}+\mathrm{k}\right)$

Comparison RangeTree and kdtree

4D

n	$\log n$	$\log ^{4} n$	$n^{3 / 4}$
1024	10	10,000	181
65,536	16	65,536	4096
1 M	20	160,000	32,768
1 G	30	810,000	$5,931,641$
1 T	40	$2,560,000$	1 G

