

1

2

Definitions

Given a simple polygon P

- A diagonal is a segment between 2 non-adjacent vertices that lies entirely within the interior of the polygon.
- A ear with tip v_{i} is a set of 3 consecutive vertices v_{i-1}, v_{i}, v_{i+1} if $v_{i-1} v_{i+1}$ is a diagonal. - Put differently, vi is an ear tip if the ver
right after it are visibbe to each other

Polygon Triangulation

The problem: Triangulate a given polygon.
(output a set of diagonals that partition the polygon into triangles).

3

Known Results

- Theorem: Any simple polygon must have a convex vertex.
- Theorem: Any simple polygon with $n>3$ vertices contains (at least) a diagonal.
- Theorem: Any polygon can be triangulated by adding diagonals.

Theorem: Any simple polygon has at least two ears.

- All triangulations of a polygon of n vertices have n - 2 triangles and $\mathrm{n}-3$ diagonals.

Algorithms

- Is pipi a diagonal of P?
- Find a diagonal of P
- Is v the tip of an ear?
- Find all ears
==> Triangulate by finding ears

History of Polygon Triangulation

Early algorithms: $O\left(n^{4}\right), O\left(n^{3}\right), O\left(n^{2}\right)$
Several $O(n \lg \mathrm{n}$) algorithms known \qquad practical
. Many papers with improved bounds \qquad not practica
.
1991. Bernard Chazelle (Princeton) gave an O(n) algorithm \longleftarrow

- https://www.cs.princeton.edul/ chazelle/pubs/polygon-triang.pdf

Ridiculously complicated, not practica

- O(1) people actually understand it (and l'm not one of them)
- No algorithm is known that is practical enough to run faster than the $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ algorithms - OPEN problem

A practical algorithm that's better than O(n la $)^{2}$

Polygon triangulation: First steps

- Algorithm 1: Triangulation by identifying ears

- Idea: Find an ear, output the diagonal, delete the ear tip, repeat
- Analysis:
- checking whether a vertex is ear tip or not: $O(n)$
- checking all vertices: $O\left(n^{2}\right)$
- overall $O\left(n^{3}\right)$
- Algorithm 2: Triangulation by finding diagonals
- Idea: Find a diagonal, output tit, recurse.
- A diagonal can be found in $\mathrm{O}(\mathrm{n})$ time (using the proof that a diagonal exists)
- O($\left.n^{2}\right)$

Polygon triangulation: First steps

- Algorithm 3: Triangulation by identifying ears in $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Find an ear, output the diagonal, delete the ear tip, repeat
- Avoid recomputing ear status for all vertices every time
- When you remove a ear tip from the polygon, which vertices might change their ear status?

8
9

Monotone chains
A polygonal chain is \mathbf{x}-monotone if any line perpendicular to x -axis intersects

- Considerthe special case of triangulating a monotone/unimonotone

- Therens

Corvert an arbitrary polygon into monotone/unimonotone polygons
it in one point (one connected component).

13

As you travel along this chain, your x As you travel along this chain, your x -
coordinate is staying the same or increasing

14

Monotone chains

A polygonal chain is \mathbf{y}-monotone if any line perpendicular to \mathbf{y}-axis intersects

17

Monotone chains

- Claim: Let u and v be the points on the chain with $\min / \mathrm{max} \mathrm{x}$-coordinate. The vertices on the boundary of an x-monotone chain, going from u to v,
are in x-order.

Monotone chains

A polygonal chain is \mathbf{L}-monotone if any line perpendicular to line \mathbf{L} intersects it in one point (one connected component).

18

19

Monotone Mountains

A polygon is an \mathbf{x}-monotone mountain if it is monotone and one of the two chains is a single segment.

20

Monotone Mountains
A polygon is an x -monotone mountain ifitis monotone and one of the two chains is a single segment.

23

21

Monotone mountains are easy to triangulate!

Class work: come up with an algorithm and analyze it.

25

28

26

27

30

31

34

32

35

33

Monotone mountains are easy to triangulate!

36

37

40

38

41

39

42

43

46

44

47

45

48

49

52

50

53

51

54

55

58

56

59

57

60

61

65

62

63

What makes a polygon not monotone?

67

68

Trapezoid partitions
Properties

- Each polygon in the partition is a trapezoid, because,
- It has one or two threads as sides.
- If it has two, then they must both hit the same edge above, and the same edge below
- At most one thread through each vertex $=>0(n)$ threads $=>O(n)$ trapezoids

71

Trapezoid partitions

Shoot vertical rays

- If polygon is above vertex, shoot vertical ray up until reaches boundary
- If polygon is below vertex, shoot down
- If polygon is above and below vertex, shoot both up and down

69

Trapezoid partitions
Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

72

73

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and
one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezzia has precisely two vertices of the polygon, one on the left and
one on the right. They can be on the top, bottom or middle of the trapezoid.

75

Diagonals
In each trapezoid: if its two verices are not diagonal

76
Diagonals
In each trapezoid: if its two vertices are not on the same edge, they define a diagonal

77

78

79

80

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices

81

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

85

88

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/atter the cusp

This creates a partition of P.
Claim: The resulting polygons have no cusps and thus are monotone (by theorem).

87

Removing cusps

- Another example

90

91

Removing cusps

This partitions the polygon into monotone pieces.

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P

92

95

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. Add obvious diagonal before/after each cusp

93

Towards an O(n Ig n) Polygon Triangulation Algorithm

97

Partitioning into monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.
\qquad
98

101

Partitioning into monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

Claim: All diagonals partition the polygon into monotone mountains.

99

102

103

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

109

110

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep
- Events: polygon vertices
- Status structure: edges that intersect current sweep line, in y-order
- Events:

How do we determine the trapezoids?

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

111

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Algorithm

