

1

2

5

Line segment intersection

- The problem (what)
- Applications (why)
- Algorithms (how)
- A special case: Orthogonal line segments
- General case and Bentley-Otman line sweep algorithm

3

6

7

10

8

12

13

14

Binary Search Trees (BST)

- Operations
- insert
- delete
- delete
- search
- traversals (in order, ..)
- min, max

A special case: Orthogonal line segment intersection

Exercises

- Come up with a straightforward algorithm and analyze its time
- Improved algorithm?

15

Balanced Binary Search Trees (BBST)

Binary search trees + invariants that constrain the tree to be balanced (and thus have logarithmic height)

- These invariants have to be maintained when inserting and deleting (so we These invariants have to be maintained
- BBST variants
- red-black trees
- AVL trees
- B-trees
- (a, b) trees
- ...

19

- Operations
- insert
- delete
- successor, predecesso
- traversals (in order,
- min, max
- range search (1D)

20

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, x 3, \ldots x_{n}\right\}$
- Pre-process it in order to answer
rangeSearon(a). return all elements in P in interval (a, b)
D Range Searching
- Given a set of values $\mathrm{P}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \times 3, \ldots \mathrm{x}_{n}\right.$
- Pre-process it in order to answer
rangeSearch (a, b) : return all elements in P in interval (a, b)

25

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{n}\right\}$
- Pre-process it in order to answer
rangeSearch (a, b): return all elements in P in interval (a, b)

26

1D range searching with Binary Search Trees
Example: range_search(21, 53): return $21,34,35,46,51,52$

29

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, \times 3, \ldots, x_{n} \mid\right.$
- Pre-process it in order to answer
rangeSearch (a, b) : return all elements in P in interval (a, b)

27

1D range searching with Binary Search Trees
Example: range_search(21, 53): return $21,34,35,46,51,52$

$21 \quad 53$

31

32

35

1D range searching with Binary Search Trees

- Range search (a,b): return all elements in this interval

33

Orthogonal line segment intersection

37

Orthogonal line segment intersection

line sweep technique solve the problem behind the line

- Let X be the set of X -coordinates of all segments //our "events" Sort X and traverse the events in order

$$
2
$$

Orthogonal line segment intersection

line sweep technique

 solve the problem behind the ine

Orthogonal line segment intersection

- Let X be the set of X -coordinates of all segments //our "events" - Sort X and traverse the events in order
line sweep technique solve the problem behind the ine

Orthogonal line segment intersection

line sweep technique solve the problem behind the ine

- Let X be the set of x-coordinates of all segments //our "events" Sort X and traverse the events in orde
- Let X be the set of x -coordinates of all segments //our "events" - Sort X and traverse the events in order

Orthogonal line segment intersection

line sweep technique solve the problem behind the line

- Let X be the set of x -coordinates of all segments //our "events" - Sort X and traverse the events in order

Orthogonal line segment intersection

Events
beginning of a horizontal segment
end of a horizontal segment
vericial segment
line sweep technique solve the problem behind the ine
and

Orthogonal line segment intersection

- Let X be the set of x-coordinates of all segments - Initialize AS = 11
- Sort X and traverse the events in sorted order; let
x be the nexx evenent in X
- if x is start of horizontal segment (x, x^{x}, y):
insert segment (x, x, y) in AS
- if x is end of horizontal segment $\left(x, x^{\prime}, y\right)$:
delete segment (x, x, y) from $A S$
- if x corresponds to a vertical segment (y, y, x) :

search AS for all segments with y-value in
given range [yy] and report intersections

Orthogonal line segment intersection

Events
beginning of a horizontal segmen
end of a horizontal segment
vertical segment

Line sweep technique - Events

- Traverse events in order and maintain an - AS contains objects that are
 other words they arei
present sweep ine
at certain events, inserti in AS
- at certan evennts, delete f fom AS
- at other events, query $A S$

Orthogonal line segment intersection

Let X be the set of x -coordinates of all segments - Intialize AS = (1)

- Sort X and traverse the events in sorted order; let
- if x is start of horizontal segment $\left(x, x^{\prime}, y\right)$:

Insert segment (x, x : y) in AS

- if x is end of horizontal segment (x, x^{\prime}, y):
delete segment $(x, x ; y)$) fom AS
- if x corresponds to a vertical segment (y, y, y) :
//Al active seaments start beiorex and end
after x We need inose whose y in in y .
search AS for all segments with y-value in
given range $[y, y]$ and report intersections

45

Orthogonal line segment intersection

- Let X be the set of x-coordinates of all segments - Initiaize AS = II
- Sort X and traverse the events in sorted order; let
xbe the next event in X x be the next event in x
- if x is start of horizon
- if x is start of horizontal segment $\left(x, x^{\prime}, y\right)$:
insert segment $(x, x, y$) in AS
- if x is end of horizontal segment $\left(x, x^{\prime}, y\right.$):
delete seament (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment (y, y, x, x) :

search AS for all segments with y-value in
given range $[y . y]$ and report titersections

49

50

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments - Intitilize AS = II
- Sort x and traverse the events in sorted order; let

Sort X and traverse the
\times be the next event in X

- if x is start of horizontal segment ($\left(x, x^{\prime}, y^{\prime}\right.$): clsegment becomes acive
insert segment ($(x, y, y$) in AS
- if x is end of horizontal segment (x, x, y) :
delete segment (x, x, y) from $A S$
- if x corresponds to a vericial segment $(y, y, y$: :

search AS for all segments with y-value in
given range [Jy. $]$ and report intersections

51

Orthogonal line segment intersection

54

55

56

57

Orthogonal line segment intersection

> - Let X be the set of x -coordinates of all segments - Intitaize AS = 11
> $\begin{aligned} & \text { - Sort } X \text { and traverse the } \\ & \text { xbe the next event in } X\end{aligned}$
> - if x is start of horizontal segment (x, x, y) :
> I/ssegment becomes active
> - if x is end of horizontal segment (x, x, y) :
> I/segment stops being active
> - if x corresponds to a vertical segment $\left(y, y^{\prime} ; x\right)$:
> I/AAl active segments stan beforex and end
> $\begin{aligned} & \text { search AS for all segments with y-value in } \\ & \text { given range }[y, y] \text { and report intersections }\end{aligned}$

Line sweep

- Frequently used technique
- Line can be horizontal or veritical or radial or....

