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• The problem (what) 

• Applications (why) 

• Algorithms (how) 
• A special case: Orthogonal line segments  
• General case and Bentley-Otman line sweep algorithm

Line segment intersection
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Problem: Given a set of line segments in 2D, find all their pairwise intersections.
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Problem: Given a set of line segments in 2D, find all their pairwise intersections.
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Applications

Graphics: rendering => hidden surfaces ==> intersections
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Applications

Motion planning and collision detection in autonomous systems/robotics

R
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Applications

Geographical data: River networks, road networks, railways, ..
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Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif
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Applications

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

Map overlay in GIS
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Algorithms
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Naive

Exercises:  

• Give upper and lower bounds for k, draw examples that achieve these bounds. 

• Give a straightforward algorithm that computes all intersections and analyze its 
running time. Give scenarios when this algorithm is efficient/inefficient.  

• What is your intuition of an upper bound for this problem?  (how fast would you 
hope to be able to solve it?)   

Notation  
• n: size of the input  (number of segments)  
• k: size of output (number of intersections) 

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.
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A special case: Orthogonal line segment intersection

Exercises 

• Come up with a straightforward algorithm and analyze its time  
• Improved algorithm?
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Balanced Binary Search Trees  
- review - 
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Binary Search Trees (BST)

• Operations  

• insert 
• delete 
• search 
• successor, predecessor  
• traversals (in order, ..) 
• min, max 
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Balanced Binary Search Trees (BBST)

• Binary search trees + invariants that constrain the tree to be balanced (and 
thus have logarithmic height) 

• These invariants have to be maintained when inserting and deleting (so we 
can think of the tree as self-balancing) 

• BBST variants  
• red-black trees 
• AVL trees 

• B-trees 

• (a,b) trees  
• …
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Example: Red-Black trees 

• Binary search tree, and   

• Each node is Red or Black  
• The children of a Red node must be Black  
• The number of Black nodes on any path from the root to any node that 

does not have two children must be the same 

Note:  
• easier to conceptualize the tree as containing  explicit  NULL leaves, all Black 
• the number of Black nodes on any root-to-leaf path must be the same
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Example: Red-Black trees 

• Theorem:  
• A Red-Black tree of n nodes has height Theta( lg n). 
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Example: Red-Black trees 

• Theorem:  
• After an insertion or a deletion, the RB tree invariants can be maintained 

in additional O(lg n) time.  This is done by performing rotations and 
recoloring nodes on the path from the inserted/deleted node to the root. 
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Binary Search Trees 

• Operations  

• insert 
• delete 
• search 
• successor, predecessor  
• traversals (in order, ..) 
• min, max  
• range search (1D)
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1D Range Searching 
• Given a set of values P = {x1, x2, x3, …xn } 
• Pre-process it in order to answer  

rangeSearch(a,b): return all elements in P  in interval  (a,b)

a b
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a b
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1D Range Searching 
• Given a set of values P = {x1, x2, x3, …xn } 
• Pre-process it in order to answer  

rangeSearch(a,b): return all elements in P  in interval  (a,b) 

• If P is static 
• Ideas? 

a b
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1D Range Searching 
• Given a set of values P = {x1, x2, x3, …xn } 
• Pre-process it in order to answer  

rangeSearch(a,b): return all elements in P  in interval  (a,b) 

• If P is static 
• Pre-precess: sort  
• Range search: binary search , O( lg n + k) per query

a b

26

1D Range Searching 
• Given a set of values P = {x1, x2, x3, …xn } 
• Pre-process it in order to answer  

rangeSearch(a,b): return all elements in P  in interval  (a,b) 

• If P is static 
• If P is dynamic:  

• use BBST

a b
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1D range searching with Binary Search Trees 

Example: range_search(21, 53):  return 21, 34, 35, 46, 51, 52

21 53
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1D range searching with Binary Search Trees 

Example: range_search(21, 53):  return 21, 34, 35, 46, 51, 52

21 53
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1D Range Searching with Red-Black Trees

Example: range_search(10, 16):  return 11, 13, 15

10 16
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1D range searching with Binary Search Trees 

• Range search (a,b): return all elements  in this interval

a b

33

1D range searching with Binary Search Trees 

• Range search (a,b): return all elements  in this interval  
• Can be answered in O( lg n+k), where k = O(n) is the size of output

a b
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Orthogonal line segment intersection 
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Orthogonal line segment intersection 

• Let X be the set of x-coordinates of all segments    //the “events”

xstart xend

x
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Orthogonal line segment intersection 

• Let X be the set of x-coordinates of all segments    //our “events” 
• Sort X and traverse the events in order

line sweep technique
solve the problem behind the line
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Orthogonal line segment intersection 

line sweep technique
solve the problem behind the line

Events
beginning of a horizontal segment

end of a horizontal segment

vertical segment
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Orthogonal line segment intersection

• Events 

• Traverse events in order and maintain an 
Active Structure (AS) 

• AS contains objects that are 
“active” (started but not ended) in 
other words they are intersected by the 
present sweep line  

• at certain events, insert in AS 

• at certain events, delete from AS 

• at other events, query AS 

Line sweep technique

Events
beginning of a horizontal segment

end of a horizontal segment

vertical segment
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Orthogonal line segment intersection 

• Let X be the set of x-coordinates of all segments    
//the events 

• Initialize AS = {} 

• Sort X and traverse the events in sorted order; let 
x be the next event in X 

• if x is start of horizontal segment (x, x’, y):  

//segment becomes active 
insert segment (x,x’,y) in AS 

• if x is end of horizontal segment (x, x’, y):  

//segment stops being active  

delete segment (x,x’,y) from AS 
• if x corresponds to a vertical segment (y, y’,x):   

//All active segments start before x and end 
after x. We need those whose y is in [y,y’] 

search AS for all segments with y-value in 
given range [y,y’] and report intersections

AS=? 
in order to do this efficiently
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• Pick an example and simulate the 
algorithm  

• How do you implement the AS? 

• Analysis?  

• Let X be the set of x-coordinates of all segments    
//the events 

• Initialize AS = {} 
• Sort X and traverse the events in sorted order; let 

x be the next event in X 

• if x is start of horizontal segment (x, x’, y):  

//segment becomes active 

insert segment (x,x’,y) in AS 
• if x is end of horizontal segment (x, x’, y):  

//segment stops being active  

delete segment (x,x’,y) from AS 
• if x corresponds to a vertical segment (y, y’,x):   

//All active segments start before x and end 
after x. We need those whose y is in [y,y’] 

search AS for all segments with y-value in 
given range [y,y’] and report intersections

Orthogonal line segment intersection 

58

Line sweep 

• Frequently used technique 
• Line can be horizontal or vertical or radial or …. 

• Traverse events in order and maintain an Active Structure (AS) 
• AS maintains objects that are “active” (started but not ended) in other words they are 

intersected by the present sweep line  
• at certain events, insert in AS 
• at certain events, delete from AS 
• at other events, query AS
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