
Computational Geometry
[csci 3250]

Laura Toma

Bowdoin College

1

Orthogonal
line segment intersection

Computational Geometry
[csci 3250]

Laura Toma
Bowdoin College

2

• The problem (what)

• Applications (why)

• Algorithms (how)
• A special case: Orthogonal line segments
• General case and Bentley-Otman line sweep algorithm

Line segment intersection

3

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

4

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

5

Line segment intersection

+

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

6

Applications

Graphics: rendering => hidden surfaces ==> intersections

7

Applications

Motion planning and collision detection in autonomous systems/robotics

R

8

Applications

Geographical data: River networks, road networks, railways, ..

9

Applications

Geographical data: River networks, road networks, railways, ..

10

Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

11

Applications

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

Map overlay in GIS

12

Algorithms

13

Naive

Exercises:

• Give upper and lower bounds for k, draw examples that achieve these bounds.

• Give a straightforward algorithm that computes all intersections and analyze its
running time. Give scenarios when this algorithm is efficient/inefficient.

• What is your intuition of an upper bound for this problem? (how fast would you
hope to be able to solve it?)

Notation
• n: size of the input (number of segments)
• k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

14

A special case: Orthogonal line segment intersection

Exercises

• Come up with a straightforward algorithm and analyze its time
• Improved algorithm?

15

Balanced Binary Search Trees
- review -

16

Binary Search Trees (BST)

• Operations

• insert
• delete
• search
• successor, predecessor
• traversals (in order, ..)
• min, max

17

Balanced Binary Search Trees (BBST)

• Binary search trees + invariants that constrain the tree to be balanced (and
thus have logarithmic height)

• These invariants have to be maintained when inserting and deleting (so we
can think of the tree as self-balancing)

• BBST variants
• red-black trees
• AVL trees

• B-trees

• (a,b) trees
• …

18

Example: Red-Black trees

• Binary search tree, and

• Each node is Red or Black
• The children of a Red node must be Black
• The number of Black nodes on any path from the root to any node that

does not have two children must be the same

Note:
• easier to conceptualize the tree as containing explicit NULL leaves, all Black
• the number of Black nodes on any root-to-leaf path must be the same

19

Example: Red-Black trees

• Theorem:
• A Red-Black tree of n nodes has height Theta(lg n).

20

Example: Red-Black trees

• Theorem:
• After an insertion or a deletion, the RB tree invariants can be maintained

in additional O(lg n) time. This is done by performing rotations and
recoloring nodes on the path from the inserted/deleted node to the root.

21

Binary Search Trees

• Operations

• insert
• delete
• search
• successor, predecessor
• traversals (in order, ..)
• min, max
• range search (1D)

22

1D Range Searching
• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

a b

23

1D Range Searching

a b

• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

24

1D Range Searching
• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

• If P is static
• Ideas?

a b

25

1D Range Searching
• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

• If P is static
• Pre-precess: sort
• Range search: binary search , O(lg n + k) per query

a b

26

1D Range Searching
• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

• If P is static
• If P is dynamic:

• use BBST

a b

27

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

28

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

29

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

30

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

31

1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

10 16

32

1D range searching with Binary Search Trees

• Range search (a,b): return all elements in this interval

a b

33

1D range searching with Binary Search Trees

• Range search (a,b): return all elements in this interval
• Can be answered in O(lg n+k), where k = O(n) is the size of output

a b

34 35

Orthogonal line segment intersection

36

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments //the “events”

xstart xend

x

37

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments //our “events”
• Sort X and traverse the events in order

line sweep technique
solve the problem behind the line

38

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments //our “events”
• Sort X and traverse the events in order

line sweep technique
solve the problem behind the line

39

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments //our “events”

• Sort X and traverse the events in order

line sweep technique
solve the problem behind the line

40

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments //our “events”

• Sort X and traverse the events in order

line sweep technique
solve the problem behind the line

41

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments //our “events”

• Sort X and traverse the events in order

line sweep technique
solve the problem behind the line

42

Orthogonal line segment intersection

line sweep technique
solve the problem behind the line

Events
beginning of a horizontal segment

end of a horizontal segment

vertical segment

43

Orthogonal line segment intersection

• Events

• Traverse events in order and maintain an
Active Structure (AS)

• AS contains objects that are
“active” (started but not ended) in
other words they are intersected by the
present sweep line

• at certain events, insert in AS

• at certain events, delete from AS

• at other events, query AS

Line sweep technique

Events
beginning of a horizontal segment

end of a horizontal segment

vertical segment

44

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

45

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

46

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

47

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

48

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

49

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

50

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

51

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

52

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

53

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

54

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

55

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

56

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}

• Sort X and traverse the events in sorted order; let
x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active
insert segment (x,x’,y) in AS

• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

AS=?
in order to do this efficiently

Orthogonal line segment intersection

57

• Pick an example and simulate the
algorithm

• How do you implement the AS?

• Analysis?

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X

• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

58

Line sweep

• Frequently used technique
• Line can be horizontal or vertical or radial or ….

• Traverse events in order and maintain an Active Structure (AS)
• AS maintains objects that are “active” (started but not ended) in other words they are

intersected by the present sweep line
• at certain events, insert in AS
• at certain events, delete from AS
• at other events, query AS

59

