
Computational Geometry
[csci 3250]

Laura Toma

Bowdoin College

1

Geometric data

• points (location, ..)
• segments (roads, …)
• polygons, polyhedrons
• meshes

Techniques
• divide-and-conquer
• incremental

• plane sweep

• space decomposition
• ..

Example problems

• find intersections
• find closest points
• find all roads within 1km of

current location
• range searching
• .. Today

2

Given a set of points, preprocess them into a data structure to support fast
range queries.

Range searching

2D

3

Arise in settings that are not geometrical.
Database of stars. A star = (brightness, temperature,……)

Examples

brightness

temperature

Find all stars with brightness
and temperature within given
intervals

4

Examples

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Database of employees. An employee = (age, salary,……)

5

Examples

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

6

The naive approach:

• No data structure: traverse and check in O(n)

• Note: good when k is large

Do better. What sort of bounds can we expect?

Range searching

Points are static or dynamic?

Static (it’s hard enough)

7

1D Range searching

Given a set of n points on the real line, preprocess them into a data structure to
support fast range queries.

1D

Example

• Input: values 1 through 30, in arbitrary order

• Range query: find all values in [2,29]

8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 29RangeQuery([2,29])

1D Range searching

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 29RangeQuery([2,29])

1D Range searching

10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 29
The k points in the range are in O(lg n) subtrees

1D Range searching

11

• A set of n points can be pre-processed into a BBST such that:
• Build: O(n lg n)
• Space: O(n)

• Range queries: O(lg n +k)

• Note: it’s dynamic (points can be inserted/deleted in O(lg n))

1D

12

• Build: O(n lg n)
• Space: O(n)
• Range queries: O(lg n2 +k)

2D

..perhaps?

1D
• A set of n points can be pre-processed into a BBST such that:

• Build: O(n lg n)

• Space: O(n)
• Range queries: O(lg n +k)
• Note: it’s dynamic (points can be inserted/deleted in O(lg n))

13

• Denote query [x1, x2] x [y1, y2]
• Idea

• Find all points with the x-coordinates in the correct range [x1, x2]
• Out of these points, find all points with the y-coord in the correct range [y1, y2]

x1 x2

y2

y1

2D

14

x1 x2

y2

y1

2D

• Can we use a BBST on x-coordinate?

15

16

Space decomposition

17 18

The grid method

19

class Grid {

double x1, x2, y1, y2; // the bounding box of the grid

int m; // number of cells in the grid

double cellsize_x, cellsize_y; // size of a grid cell

List<point2D*> ***g; //2D array of lists (of pointers to the points)

 //g[i][j] contains the list of points that lie in cell [i][j]

Grid (Point p[], int n, int m, double x1, x2, y1, y2);

List<Point2D*>* rangeQuery(double x1, x2, y1, y2);

….

};

The grid method

20

• To build a grid of m-by-m cells from a set of points P

• figure out a rectangle that contains P: for e.g. xmin, xmax, ymin,ymax

• allocate g as a 2d array of lists, all initially empty

• for each point p in P: figure out which cell i, j contains p, and insert p in g[i][j]

g = new (List<point2D*>**)[m];

for (int i=0; i<m; i++) {

g[i] = new (List<point2D*>*) [m];

for (int j=0; j<m; j++) {

g[i][j] = new List<point2D*>;

}

}

j = (p.x - xmin)/cellsize_x;

i = (ymax - p.y/cellsize_y;

g[i][j]->insert(&p);

The grid method

21

• Range queries

x1 x2

y1

y2

The grid method

22

x1 x2

y1

y2

• Range queries

The grid method

23

Analysis
• How many points in a cell?

• worst case

• best case
• How long does a range query take ?

• worst-case?
• points are uniformly distributed?

• How to chose m?

The grid method

24

Analysis

• How many points in a cell?
• worst case
• best case

• How long does a range query take ?
• worst-case?
• points are uniformly distributed?

• How to chose m?

Grids perform well if points are uniformly distributed, and less well if they are not.

Grids can be used as heuristic for many other problems besides range searching
(e.g. closest pair, neighbor queries)

The grid method

25

kd trees

2d search trees
3d search trees
4d search trees

…

26

2d binary search trees

The idea: A binary tree which recursively subdivides the plane by vertical
and horizontal cut lines

Vertical and horizontal lines alternateß

Cut lines are chosen to split the points in two (==> logarithmic height)

27

2d binary search trees

28

2d binary search trees
split points in two halves with a vertical line

29

2d binary search trees
split each side into half with a horizontal line

30

2d binary search trees
repeat

31

2d binary search trees

32

2d binary search trees

Variants:

• Choose the cut line so that it falls in between the points. Internal nodes
store lines, and points are only in leaves.

• Choose the cut line so it they goes through the median point. Assign the
median to the e.g. left side, consistently. Internal nodes store lines, and
points are only in leaves.

• Chose the cut line so that it goes through the median point, and store the
median in the internal node.

• …

33

2d binary search trees

p1

p2

p3

34

2d binary search trees
split with vertical line through x-median

p1

p2

p3

l1

l1

include median to the left

35

2d binary search trees
split with horizontal line through y-median

p1

p2

p3

l1

l1

include median to the left

l2

l2 p3

36

2d binary search trees

repeat

p1

p2

p3

l1

l2

l1

l2 p3

p2 p1

37

2d binary search trees

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13 p14 p15

38

2d binary search trees
split with vertical line through x-median

median goes to the left side

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13 p14 p15

l1

39

2d binary search trees
split each side with horizontal line through y-median

p1

p2

p3

median goes to the left side

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14 p15

l1

l2

l3

40

2d binary search trees
repeat

p1

p2

p3

p4

p5

p6

p7

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14 p15

l1

l2

l3

l4

l5

l6

l7

41

2d binary search trees
repeat

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14 p15

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l13

42

2d binary search trees

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13 p14 p15

Exercise: Draw the 2d-tree for these points

43

Questions
• How do you build it and how fast?
• How much space does it take?
• How do you answer range queries and how fast?

2d binary search trees

44

2d binary search trees construction

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

45

How fast?

2d binary search trees construction

46

How fast?
• Let T(n) be the time needed to build a 2d tree of n points

• Then

T(n) = 2T(n/2) + O(n)

• This solves to O(n lg n)

• The O(n) median finding algorithm is not practical. Either do a randomized
median finding, or,

• Better: pre-sort P on x- and y-coord and pass them along as argument, and
maintain the sorted sets through recursion

 P1-sorted-by-x, P1-sorted-by-y

 P2-sorted-by-x, P2-sorted-by-y

2d binary search trees construction

47

How much space does it take?

2d binary search trees

48

How much space does it take?

O(n)

2d binary search trees

49

Regions of nodes

p1

p2

p3

l1

l1

l2

l2 p3

the whole plane

left of l1 right of l1

left of l2 right of l2

Each node in the tree corresponds to a region in the plane.

50

Regions of nodes

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

51

Range queries on 2d binary search trees

p1

p2

p3

l1

l2

l1

l2 p3

p2 p1

52

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

53

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• White nodes: nodes never visited by the query
• Grey nodes: visited by the query, but unclear if they lead to output
• Black nodes: visited by the query, whole subtree is output

To analyze RangeSearch(), we look at the nodes visited in the kd-tree

54

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Claim:
• Run time = O(number of black and grey nodes)

HOW MANY?

55

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

How many black nodes?

Claim:
• Each black leaf contain a point that’s reported
• Number of black nodes is O(k)

56

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Claim: run time = O(k) + O(grey nodes)

O(k)

HOW MANY?

57

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Grey nodes: visited by the query, but unclear if they lead to output
What does it mean in terms of region(v) intersecting the range R?

58

2D Range searching: Analysis

• White nodes: nodes never visited by the query

• Grey nodes: visited by the query, but unclear if they lead to output

• Black nodes: visited by the query, whole subtree is output

R does not intersect region(v)

R intersects region(v), but region(v) not contained in R

region(v) is contained in R

Claim: The region of a gray node intersects the boundary of R

59

screenshot from Mark van
Kreveld slides at http://

www.cs.uu.nl/docs/vakken/ga/
slides5a.pdf

How many nodes in a kd-tree are such that the boundary of their region

intersects the boundary of the range?

How many grey nodes?

60

Simplified problem:

We’ll try to count the number of grey nodes whose region intersects a vertical line l.

61

Simplified problem:

We’ll try to count the number of grey nodes whose region intersects a vertical line l.
We’ll think recursively, starting at the root:

62

Simplified problem:

We’ll try to count the number of grey nodes whose region intersects a vertical line l.
We’ll think recursively, starting at the root:

• depth=0: region(root) intersects l

63

Simplified problem:

We’ll try to count the number of grey nodes whose region intersects a vertical line l.

We’ll think recursively, starting at the root:
• depth=1: only one of left and right child of root intersects l

64

Simplified problem:

We’ll try to count the number of grey nodes whose region intersects a vertical line l.

We’ll think recursively, starting at the root:
• depth=2: both left and right child intersect l, and we can recurse

65

Proof:
• Let G(n) represent the number of nodes in a kdtree of n points whose regions

interest a vertical line l.
• Then G(n) = 2 + 2 G(n/4), and G(1) = 1
• This solves to G(n) = O(n)

Claim: Any vertical or horizontal line l stabs O(n) regions in the tree.

66

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

67

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

68

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

69

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

70

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

71

3D: 3d-tree

72

3D: 3d-tree

• A 3D kd-tree alternates splits on x-, y- and z-dimensions
• A 3D range query is a cube
• The construction if a 2D kd-tree extends to 3D
• The 3D range query is exactly the same as in 2D
• Analysis:

73

Higher dimensions

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

74

