

1

2

Examples

Database of employees. An employee $=($ age, salary,$\ldots . .$.

3

Examples

Range searching
Given a set of points, preprocess them into a data structure to support fas range queries.

Example of a 3-dimensional
Example of a 3 -dimensiona
(orthogonal) range query:
children in $[2,4]$, salary in
children in [2, 4], salary in
$[3000,4000]$, date of birth in
[19,500,000, 19,559,999]

7

1D Range searching

Given a set of n points on the real line, preprocess them into a data structure to support tast range queries.

1D

Example

- Input: values 1 through 30 , in arbitrary order
- Range query: find all values in $[2,29]$

8

9

1D

- A set of n points can be pre-processed into a BBST such that:
- Build: $O(n \lg n)$
- Build: O(nlg n)
- Range queries: O(lan
- Note: it's dynamic (points can be inserted/deleted in O(Ig n))

1D

- A set of n points can be pre-processed into a BBST such that:
- Build: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Space: O(n)
- Range queries: $O(\lg n+k)$
- Note: it's dynamic (points can be inserted/deleted in $\mathrm{O}(\mathrm{Ig} \mathrm{n})$

2D

- Bpace: 0 o(n) \quad. \ln Derhaps?
- Range queries: $\mathrm{O}\left(\mathrm{lg} \mathrm{n}^{2}+\mathrm{k}\right)$

14

17

2D

- Can we use a BBST on x-coordinate?

15

18

19

20

23

The grid method

- To build a grid of m-by-m cells from a set of points P
- figure out a rectangle that contains P: for e.g. $\mathrm{xmin}_{\text {m }}, x_{\text {max }}, y_{\text {minin }}, y_{\text {max }}$
- allocate g as a 2d array of lists, all intitially empty

$$
\begin{aligned}
& \text { for (int } \mathrm{i}=0 ; \mathrm{ikm} ; i+\mathrm{t}) \text { \} } \\
& \text { g(i) } \left.=\text { new (Listcpoint } 20^{*}, *\right) \text { [mi }
\end{aligned}
$$

$$
\begin{aligned}
& g \text { gitidi }=\text { new Listcpoint20**; }
\end{aligned}
$$

- for each point pin P: figure out which cell i, j contains p, and insert p in g[i]ij]

$$
\begin{aligned}
& j=\left(p . x-x_{\text {min }}\right) / \text { cellsize_- } x_{i} \\
& i=\left(y_{\text {max }}-\right.\text { p.y/cellsize_y; } \\
& \text { g(i) [i]j--insert(ep); }
\end{aligned}
$$

21

The grid method
Analysis

- How many points in a cell?
- worst case
- best case
- How long does a range query take ?
- worst-case?
- points are unifiormly distributed?
- How to chose m?

25

26

29

2d binary search trees

The idea: A binary tree which recusively subdivides the plane by vertica and horizontal cut lines

Vertical and horizontal lines alternateß
Cut lines are chosen to split the points in two (==> logarithmic height)

27

30

31

32

35

2d binary search trees

Variants:
-Choose the cut line so that it falls in between the points Internal nodes store lines, and points are only in leaves.

- Choose the cut line so it they goes through the median point. Assign the median to the e.g. left side, consistently. Internal nodes store lines, and points are only in leaves.
- Chose the cut line so that it
median in the internal node
-...

33

36

37

40

38

41

39

42

43

44

2d binary search trees construction

How fast?

- Let $\mathrm{T}(\mathrm{n})$ be the time needed to build a 2 d tree of n points
- Then
$T(n)=2 T(n / 2)+O(n)$
This solves to $\mathbf{O}(\mathrm{n} \lg \mathrm{n})$

The O(n) median finding algortithm is not practical. Either do a randomized - median finding, or,

- Better: pre-sort P on x - and y-coord and pass them along as argument, and
maintaint the sorted sets through recursion

P1.sorted-by-x, P1.sorted-by-y
P_{2}.sorted-by-x, P_{2}.sorted-by-y

2d binary search trees construction

Algorithm BuildKdTree (P, depth $)$

1. if P contains only one point
2. then return a leaf storing this point

then Split P with a vertical line ℓ through th median x-coordinate into P_{1} (left of or on ℓ) and P_{2} (right of ℓ)
else Split P with a horizonta line ℓ through the median y-coordinate into P_{1} (below or on ℓ) and P_{2} (above ℓ)
3. $\quad v_{\text {left }} \leftarrow \operatorname{BuildKdTrEE}\left(P_{1}\right.$, depth +1$)$
4. $\quad v_{\text {rish }} \leftarrow \operatorname{BuILDKdTree}\left(P_{2}\right.$ depth +1$)$
5. Create a node v storing ℓ, make $V_{\text {left }}$ the left
6. child of v, and make $v_{\text {right }}$ the right child of v. return v

45

2 d binary search trees

How much space does it take?

49

50

Regions of nodes

51

Algorithm SearchKdTree (v, R)
 Input. The root of (a subtree of) a kd-tree, and a range R Output. All points at leaves below v that lie in the range. 1. if v is a leaf
 then Report the point stored at v if it lies in R else if $\operatorname{region}(l c(v))$ is fully contained in R then ReportSubtree $(l c(v))$ else if $\operatorname{region}(l c(v))$ intersects R then SearchKdTree $(l c(v), R)$
 if $\operatorname{region}(r c(v)$) is fully contained in R then ReportSubtree ($r(v)$) then Reportsubtree $(r c(v)$) else if $\operatorname{region}(r c(v))$ intersects R then SearchKdTree $(r c(v), R)$

To analyze RangeSearch(), we look at the nodes visited in the kd-tree

- White nodes: nodes never visited by the query
- Grey nodes: visited by the query, but unclear if they lead to output
- Black nodes: visited by the query, whole subtree is output

55

```
Grey nodes: visited by the query, but unclear if they lead to output
```

What does it mean in terms of region(v) intersecting the range R ?

56

2D Range searching: Analysis

57

60

Simplified problem:

We'll try to count the number of grey nodes whose region intersects a vertical line l.

Simplified problem:

We'll try to count the number of grey nodes whose region intersects a vertical line 1 . We'll think recursively, starting at the root:

62

Simplified problem:

We'll try to count the number of grey nodes whose region intersects a vertical line L We'll think recursively, starting at the root:

- depth=2: both left and right child intersect 1 , and we can recurse

Simplified problem

We'll try to count the number of grey nodes whose region intersects a vertical line We'll think recursively, starting at the roo

- depth=0: region(root) intersects

63

Claim: Any vertical or horizontal line I stabs $\mathrm{O}(\sqrt{n})$ regions in the tree.
Proof:

- Let $\mathrm{G}(\mathrm{n})$ represent the number of nodes in a kdtree of n points whose regions interest a vertical line 1 .
- Then $G(n)=2+2 G(n / 4)$, and $G(1)=1$
- This solves to $G(n)=O(\sqrt{n})$

The number of grey nodes if the query were a vertical line is $O(\sqrt{n})$

The same is true if the query were a horizontal line
How about a query rectangle?
derd

67

68

n	$\log n$	\sqrt{n}
4	2	2
16	4	4
64	6	8
256	8	16
1024	10	32
4096	12	64
1.000 .000	20	1000

screenshot trom Nark van Keveld sides an

71

The number of grey nodes for a query rectangle is at most the number of grey nodes for two vertical and two horizonta lines, so it is at most $4 \cdot O(\sqrt{n})=O(\sqrt{n})!$

For black nodes, reporting a whole subtree with k leaves, takes $O(k)$ time (there are $k-1$ internal black nodes)

2eat

69

3D: 3d-tree

Theorem: A set of n points in the plane can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any 2D range query can be answered in $O(\sqrt{n}+k)$ time, where k is the number of answers reported

For range counting queries, we need $O(\sqrt{n})$ time

3D: 3d-tree

- A 3D kd-tree alternates splits on x - y - and z-dimensions
- A 3D range query is a cube
- The construction if a 2 D kd-tree extends to 3 D
- The $3 D$ range query is exactly the same as in $2 D$
- Analysis:

Let $G_{3}(n)$ be the number of grey nodes for a query with an axes-parallel plane in a 3D kd-tree
$G_{3}(1)=1$
$G_{3}(n)=4 \cdot G_{3}(n / 8)+O(1)$

Higher dimensions

Theorem: A set of n points in d-space can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any d-dimensional range query can be answered in $O\left(n^{1-1 / d}+k\right)$ time, where k is the number of answers reported

