

7

8

9

Euler's formula

- Consider a polyhedron P with $\mathrm{V}=\mathrm{n}$ vertices
- Triangulate its faces. This maximizes E and F .
- V E $\mathrm{FF}=2$
- 3F=2E
- .
- $E=3 V-6=O(n)$
- $\mathrm{F}=2 \mathrm{~V}-4=\mathrm{O}(\mathrm{n})$
- The number of vertices, edges and faces in a polyhedron are linearly related.

Platonic solids

- Regular polygon
- equal sides and angles
- Regular polytop
- faces are congruent regular polygons and the number of faces incident to each vertex is the same (and equal angles)
- Surprisingly, there exist only 5 regular polytops

41000

```
FE=EE=E
\====
```

Euler's formula

- Euler noticed a remarkable regularity in the number of vertices, edges and faces of a polyhedron (w/o holes).

Euler's formula: $\mathrm{V}-\mathrm{E}+\mathrm{F}=2$

- One proof idea:
- flatten the polygon to a plane
- prove the formula for a tree
prove for any planar graph by induction on E

13

Gift wrapping in 3D

- Video of CH in 3 D (by Lucas Benevides)
- Fast 3D convex hull algorithms with CGAL

14

Gift wrapping in 3D

Algorithm

- find a face guaranteed to be on the CH
- REPEAT
- find an edge e of a face f that's on the CH , and such that the face on
- tind an edge e of a face that's on the CH
the other side of e has not been found.
- for all remaining points pi, find the angle of (e,pi) with f
- find poit pin minal anct ad
- Analysis: $\mathrm{O}(\mathrm{n} \times \mathrm{F})$, where F is the number of faces on CH

17

Naive algorithm in 3D
Algorithm

- For every triplet of points (pi,pj, pk):
- check if plane defined by it is extreme
- if it is, add it to the list of CH faces
- Analysis: O(n^{4})

15

Gift wrapping in 3D
Algorithm find a face guaranteed to be on the CH

- repeat
- REPEAT the other side of e has not been found.
- for all remaining points pi, find the angle of (e, pi) with f
- find point pi with the minimal angle; add face (e,pi) to CH
- Implementation details
- sketch more detailed pseudocode
- finding first face?
what data structures do you need? how to keep track of vertices, edges, faces? how to store the connectivity of faces?

19

22

20

23

3d hull: divide \& conquer
The same idea as 2 D algorithm

- divide points in two halves P1 and P2
- recursively find $\mathrm{CH}\left(\mathrm{P}_{1}\right)$ and $\mathrm{CH}(\mathrm{P} 2)$
- merge
- If merge in $\mathrm{O}(\mathrm{n})$ time $==>\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ algorithm

21

Merge

- Let PI be a plane that supports the hull from below

Claim:

- When we rotate Pl around ab, the first vertex hit c must be a vertex adjacent to a or b - chas the smallest angle among all neighbors of a, b

25

26

29

Merge

1. Find a common tangent ab

- Now we need to find a triangle abc. Thus ac is an edge either on the left hull - Now we need to find
or on the right hull.
- Now we have a new edge ac that's a tangent. Repeat.

27

Merge

1. Find a common tangent ab

Now we need to find a triangle abc. Thus ac is an edge either on the left hull or on the right hull.

- Now we have a new edge ac that's a tangent. Repeat.

30

31

34

The hidden faces

- start from the edges on the boundary of the cylinder
- BFS or DFS faces "towards" the cylinder
- all faces reached are inside

32

Incremental

- $\mathrm{CH}=\{\mathrm{p} 1, \mathrm{p} 2, \mathrm{p} 3\}$
- for $\mathrm{i}=4$ ton
- //CH represents the CH of pl...pi-1
- add pi to CH and update CH to represent the CH of $p_{1 . . \mathrm{p}_{1}}$

2D

3d hull: divide \& conquer

- Theoretically important and elegant
- Of all algorithms that extend to $3 \mathrm{D}, \mathrm{DC} \&$ is the only one that achieves optimal ($\mathrm{n} \lg \mathrm{n}$)
Difficult to implemen
- The slower algorithms (quickhull, incremental) preferred in practice

Point in front/behind face
p.

p
ps is left of (behind) abc
abc not visible from p
p is right of (in front) abc abc visible from p

37

38

- Assume all faces oriented counterclockwise (their normals determined by the right-hand rule point towards the outside of P

is_visible(a,b,c,p): return signedVolume(a,b,c,p) <0

39

Incremental

Algorithm: incremental hull $3 \mathbf{d}$

-initialize $H=p 1, p 2, p 3, p 4$

- for $\mathrm{i}=5$ to do:
- for each face f of H do
- compute volume of tetrahedron formed by (f.pi)
- if volume <0 : f is visible
-if no faces are visible
- discard pi (pi must be inside H)
- else
- find border edge of all visible faces
- for each border edge e construct a face (e,pi) and add to H
- for each visible face f: delete f from H

The visible faces are precisely those that need to be discarded

