
Finding closest pair

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

1 2

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

3

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

4

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

5

Brute force:

• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

6

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

7

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

8

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

Hint: divide-and-conquer

9

Divide-and-conquer

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_first_half = mergesort(array A1)

• sorted_second_half = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

• return result

10

Divide-and-conquer

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_first_half = mergesort(array A1)

• sorted_second_half = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

• return result

Analysis: T(n) = 2T(n/2) + O(n) => O(n lg n)

11

In general
DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

Analysis: T(n) = 2T(n/2) + O(merge phase)

12

DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

In general

• if merge phase is O(n): T(n) = 2T(n/2) + O(n) => O(n lg n)

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase)

13

Divide-and-conquer for closest pair

14

Divide-and-conquer for closest pair
• find vertical line that splits P in half

15

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

P1 P2

16

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

P1 P2

17

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

18

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• …… //NOW WHAT?

How can you find closest pair in P?

19

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = find closest pair in P1

• d2 = find closest pair in P2

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

1. Is this correct?
2. Running time?

20

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = find closest pair in P1

• d2 = find closest pair in P2

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

Is this correct?
YES. The closest pair is either:
• both points are in P1, and then it is found by the recursive call on P1
• both points are in P2, and then it is found by the recursive call on P2
• one point is in P1 and one in P2, and then it is found in the merge phase, because the merge phase consider

all such pairs

21

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = find closest pair in P1

• d2 = find closest pair in P2

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

Running time?
• T(n) = 2T(n/2) + O(n2) => solves to O(n2)

22

Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?

p
q

Can (p,q) be the closest pair?

23

Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?

p
q

Why not? Where do p,q need to lie in order to be the closest pair?

d1

d2

Can (p,q) be the closest pair?

24

Notation: d = min {d1, d2}

p
q

d2

d1

In order for dist(p,q) to be smaller than d, it must be that both the horizontal
and the vertical distance between p and q must be smaller than d.

25

Proof:

p
q

d2

d1

Claim: In order to be candidates for closest pair, points p, q must lie
in the d-by-d strip centered at the median.

26

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

• …..

Refining the merge

Fill in the details of the new algorithm’s merge phase and analyze it.

p
q

d2

d1

27

Refining the merge

p
q

d2

d1

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’

• for each point q in P2’

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

28

• Show an example where the strip may contain Omega(n) points.

Refining the merge

p
q

d2

d1

• What does this imply for the running time?

29

• Ok, so this is not yet enough
• But … we also know that the vertical distance between p and q cannot be

greater than d.

Refining the merge

p q
d d

d d

30

• Consider a point p in the stripe. How many points below it, at most, could be
candidates for the closest pair (p,q)?

Refining the merge

d d

31

• Consider a point p in the stripe. How many points below it, at most, could be
candidates for the closest pair (p,q)?

Refining the merge

p q
d d

d d

any pair of points in
the left side must be
at least d away

any pair of points in
the right side must
be at least d away

p,q must lie in 2d-by-d rectangle

32

Claim:
A point p needs to check at most 5 points following p in y-order.

Refining the merge

d d

p

Note: Assume no duplicate points.

33

• Put all these together and write down the algorithm.
• Analyze the running time.

Refining the merge

34

Refining the merge
closestPair(P)

//divide

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• call closestPair(P1); let d1 be the returned closest distance

• call closestPair(P2); let d2 be the returned closest distance

//merge

• let d = min{d1, d2}

• Strip= empty

• for all p in P1: if xp > x_vertical - d: add p to Strip

• for all p in P2: if xp < x_vertical + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

35

Refining the merge
closestPair(P)

//divide

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• call closestPair(P1); let d1 be the returned closest distance

• call closestPair(P2); let d2 be the returned closest distance

//merge

• let d = min{d1, d2)

• Strip= empty

• for all p in P1: if xp > x_vertical - d: add p to Strip

• for all p in P2: if xp < x_vertical + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Analysis: ?

36

Refining the merge
closestPair(P)

//divide

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• call closestPair(P1); let d1 be the returned closest distance

• call closestPair(P2); let d2 be the returned closest distance

//merge

• let d = min{d1, d2)

• Strip= empty

• for all p in P1: if xp > x_vertical - d: add p to Strip

• for all p in P2: if xp < x_vertical + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Analysis: T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

37

• Avoiding the sort

Divide-and-conquer for closest pair

38

• Describe in full detail how to avoid sorting at every level, and give the
detailed pseudocode. Include an explanation for how to find the vertical line
that splits P in half.

Divide-and-conquer for closest pair

39

