®ps
o
o
®p7 .
Po
3}
.. 32
®pio pe® . i
o
®ps
o
o g‘ .
4 o
ps .
oPe .Ds
‘POIP‘ P2 | P3| P4 95[

<)
.
. .
® .
- - - . .
Finding closest pair . R R .
.
°
e
® o
° ' .
.
°
o
Computational Geometry [csci 3250]
Laura Toma
Bowdoin College
Given an array of points in 2D, find the closest pair. Given an array of points in 2D, find the closest pair.
®ps ops
] .
° o
op7 ° ep7 @
Po Po
.)
L] ° 32 .\. 92
®pio e® . o ®pio pe® ° i
. .
®ps ops
. ° p1 . . ° pi .
.)
e .
Ps . * ps . ¢
oPo *ps P2 ®ps
‘ |[pz[p3 ps ps[‘ 1[[)2[93[94[!75[

4

Given an array of points in 2D, find the closest pair.

Brute force:
« mindist = VERY_LARGE_VALUE
 for all distinct pairs of points pi, p;
« d = distance (p, pj)
o if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:
* mindist = VERY_LARGE_VALUE
« for all distinct pairs of points pi, p;
* d = distance (pi, p;)
« if (d< mindist): mindist=d

* Analysis:

* O(n?) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Brute force:
« mindist = VERY_LARGE_VALUE
« for all distinct pairs of points pi, p;
* d = distance (p;, pj)
« if (d< mindist): mindist=d

Can we do better
* Analysis than O(n?)'7

* O(n?) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Brute force:
¢ mindist = VERY_LARGE_VALUE
« for all distinct pairs of points pi, p;
* d = distance (pi, pj)
o if (d< mindist): mindist=d

Can we do better

* Analysis: than O(n2)?

* O(n?) pairs ==> O(n?) time

Hint: divide-and-conquer

Divide-and-conquer

mergesort(array A)
« if A has 1 element, theres nothing to sort, so just return it
. else
//divide input A into two halves, Al and A2
* Al = first half of A
* A2 = second half of A
//sort recursively each half
« sorted_first_half = mergesort(array Al)
* sorted_second_half = mergesort(array A2)
//merge

« result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

 return result

Divide-and-conquer

mergesort(array A)
« if A has 1 element, there$ nothing to sort, so just return it
. else
//divide input A into two halves, Al and A2
* Al = first half of A
* A2 =second half of A
/lsort recursively each half
+ sorted_first_half = mergesort(array Al)
* sorfed_second_half = mergesort(array A2)
//merge

 result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

« return result

Analysis: T(n) = 2T(n/2) + O(n) =>O(nlgn)

In general

DC(input P)
if P is small, solve and return

else

divide input P into two halves, P1 and P2

resultl = DC(P1)
result2 = DC(P2)

do_something_to_figure_out_result_for_P

return result

10

11

Analysis: T(n) = 2T(n/2) + O()

12

In general

DC(input P)
if P is small, solve and return

else

divide input P into two halves, P1 and P2

resultl = DC(P1)
result2 = DC(P2)

do_something_to_fgure_out_result_for_P

return result

Analysis: T(n) = 2T(n/2) + O()
* if merge phase is H T(n) = 2T(n/2) + =>0(nlgn)
* if merge phase is T(n) = 2T(n/2) + => O(n Ign)

Divide-and-conquer for closest pair

13

14

Divide-and-conquer for closest pair

« find vertical line that splits P in half

Divide-and-conquer for closest pair

« find vertical line that splits P in half
« let P, P2 = set of points to the left/right of line

Divide-and-conquer for closest pair

« find vertical line that splits P in half
« let P1, P2 = set of points to the left/right of line
* recursively find closest pair in P1

15

Divide-and-conquer for closest pair

find vertical line that splits P in half

let P1, P2 = set of points to the left/right of line
recursively find closest pair in P1

recursively find closest pair in P2

Divide-and-conquer for closest pair

.

find vertical line that splits P in half
let P1, P2 = set of points to the left/right of line
recursively find closest pair in P1

.

Divide-and-conquer for closest pair

« find vertical line that splits P in half

¢ let P1, P2 = set of points to the left/right of line
¢ di = find closest pair in P1

Divide-and-conquer for closest pair

« find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line
¢ di = find closest pair in P1

« d = find closest pair in P2 °
« for each p in Py, for each q in Pz °
* compute distance d(p,q) o
« mindist = min{d,, dz, d(p.q)}
Ce °
.
. o . .
L
. ° ¢
L]
L]
° [
. i

Is this correct? H
YES. The closest pair is either. o
« both points are in P1, and then it is found by the recursivéall on P1
+ both points are in P2, and then it is found by the recursive call on P2

+ one point is in P1and one in P2, and then it is found in the merge phase, because the merge phase consider
all such pairs

* recursively find closest pair in P2 ° * dz = find closest pair in P2 °
o . /INOW WHAT? « for each p in Py, for each q in P2
° . * compute distance d(p,q) i
« mindist = min{dy, d2, d(p.q)}
®e . ®e .
. .
L] - L] L] - L
b L i L]
L] L]
° ° ¢ . ° ¢
L] L
© '3 ° [
° ; °
é é
° 1. Is this correct? L
2. Running time?
How can you find closest pair in P?
Divide-and-conquer for closest pair Refining the merge
* find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line Do we need to examine all pairs (p,q), with p in P+, g in P2?
* di = find closest pair in P1
+ dz = find closest pair in P2 ° . °
¢ for each p in Py, for each q in Pz
 compute distance d(p,q) ° ° L
« mindist = min{d,, dz, d(p,q)}
Ce . ®e .
. .
L] o L] L] - L]
« ° M °
L L]
° . ¢ ° ° °q
L] L
°] ° [
° i ° i
° °

Running time?
+ T(n) = 2T(n/2) + O(n?) => solves to O(n?)

Can (p,q) be the closest pair?

21

22

23

Refining the merge

Do we need to examine all pairs (p,q), with p in P1, g in P2?

L]
L]
L

° °

J Ce °

L ..“'. ° L]
L
. o °q .
L]
°]
© ide
.

Can (p,q) be the closest pair?
Why not? Where do p,q need to lie in order to be the closest pair?

24

Notation: d = min {d1, d2}

In order for dist(p,q) to be smaller than d, it must be that both the horizontal
and the vertical distance between p and g must be smaller than d.

Claim: In order to be candidates for closest pair, points p, g must lie

in the d-by-d strip centered at the median.

Proof:

Refining the merge

« find vertical line that splits P in half
« let P1, P2 = set of points to the left/right of line

* recursively find closest pair in P1
« recursively find closest pair in P2
R L]
o
°
di o
e °
.
q
p
)
’
* ids
®
.

Fill in the details of the new algorithm’s merge phase and analyze it.

25

26

27

Refining the merge

« traverse Pi and select all points Py’ in the strip

°
* traverse P, and select all points P2’ in the strjp
« for each p in P/’
« for each point q in P2’ ®e
« compute distance d(p.q) d‘,.c
* mindist = min{dy, dz, d(pq)} ¢ 5 1O
p
)

Refining the merge

* Show an example where the strip may contain Omega(n) points

* What does this imply for the running time?

Refining the merge

+ Ok, so this is not yet enough
* But ... we also know that the vertical distance between p and g cannot be
greater than d

o
o
°
Bl o
°
d™d
°
]
d d

28

29

30

Refining the merge

« Consider a point p in the stripe. How many points below it, at most, could be
candidates for the closest pair (p,q)?

°
L
°
°
°
°
d
d d

Refining the merge

candidates for the closest pair (p,q)?

°
p.q must lie in 2 rectangle

« Consider a point p in the stripe. How many points below it, at most, could be

any pair of points in N
the left side must be
at least d away

any pair of points in
the right side must
be at least d away

Refining the merge

Claim:
A point p needs to check at most 5 points following p in y-order.

Note: Assume no duplicate points

]

31

32

Refining the merge

« Put all these together and write down the algorithm.
* Analyze the running time.

Refining the merge

closestPair(P)

//divide

¢ find vertical line that splits P in half

* let Py, Pz = set of points to the left/right of line

* call closestPair(P;); let d be the returned closest distance

« call closestPair(Pz); let dz be the returned closest distance

//merge

o let d = min{d;, d2}

Strip= empty

for all pin Py if xp > x_vertical - d: add p to Strip

for all pin P2 if xp < x_vertical + d: add p to Strip

sort Strip by y-coord

initialize mindist=d

for each p in Strip in sorted order

* compute its distance to the 5 points that come after it in
sorted order

« if any of these is smaller than mindist, update mindist

return mindist

Refining the merge

closestPair(P)
//divide
* find vertical line that splits P in half
* let Py, Pz = set of points to the left/right of line
* call closestPair(Py); let di be the returned closest distance
« call closestPair(P2); let dz be the returned closest distance
//merge
 let d = min{d,, d2)

Strip= empty

for all pin Py if xp > x_vertical - d: add p to Strip

for all pin P2 if xp < x_vertical + d: add p fo Strip

sort Strip by y-coord

initialize mindist=d

for each p in Strip in sorted order

* compute its distance fo the 5 points that come after it in
sorted order

« if any of these is smaller than mindist, update mindist R

* return mindist

Analysis: ?

34

35

36

Refining the merge Divide-and-conquer for closest pair Divide-and-conquer for closest pair

closestPair(P)
//divide
« find vertical line that splits P in half
* let Py, Pz = set of points to the left/right of line
* call closestPair(Py); let di be the returned closest distance
e call closestPair(Pz); let d2 be the returned closest distance
//merge
* let d = min{dy, d2)
¢ Strip= empty

for all pin Py if xp > x_vertical - d: add p to Strip

for all pin Pz if xp < x_vertical + d: add p to Strip

sort Strip by y-coord

initialize mindist=d

for each p in Strip in sorted order

« compute its distance fo the 5 points that come after it in
sorted order

« if any of these is smaller than mindist, update mindist g

+ Avoiding the sort « Describe in full detail how to avoid sorting at every level, and give the
detailed pseudocode. Include an explanation for how to find the vertical line
that splits P in half

return mindist

T(n) = 2T(n/2) + O(n Ig n) => O(n Ig2n)

37 38 39

