Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Polygon Triangulation

Polygon Triangulation

The problem: Triangulate a given polygon.
(output a set of diagonals that partition the polygon into triangles).

Polygon Triangulation

The problem: Triangulate a given polygon.
(output a set of diagonals that partition the polygon into triangles).

Definitions

Given a simple polygon P

- A diagonal is a segment between 2 non-adjacent vertices that lies entirely within the interior of the polygon.
- A ear with tip v_{i} is a set of 3 consecutive vertices $v_{i-1}, v_{i,}, v_{i+1}$ if $v_{i-1} v_{i+1}$ is a diagonal.
- Put differently, v_{i} is an ear tip if the vertex right before it and the vertex right after it are visible to each other

Known Results

- Theorem: Any simple polygon must have a convex vertex.
- Theorem: Any simple polygon with $n>3$ vertices contains (at least) a diagonal.
- Theorem: Any polygon can be triangulated by adding diagonals.
- Theorem: Any simple polygon has at least two ears.
- All triangulations of a polygon of n vertices have $n-2$ triangles and $n-3$ diagonals.

Algorithms

- Is pipj a diagonal of P?
- Find a diagonal of P
- Is v_{i} the tip of an ear?
- Find all ears
==> Triangulate by finding ears

Polygon triangulation: First steps

- Algorithm 1: Triangulation by identifying ears
- Idea: Find an ear, output the diagonal, delete the ear tip, repeat.
- Analysis:
- checking whether a vertex is ear tip or not: O(n)
- checking all vertices: $O\left(n^{2}\right)$
- overall O(n^{3})
- Algorithm 2: Triangulation by finding diagonals
- Idea: Find a diagonal, output it, recurse.
- A diagonal can be found in $\mathrm{O}(\mathrm{n})$ time (using the proof that a diagonal exists)
- $O\left(n^{2}\right)$

Polygon triangulation: First steps

- Algorithm 3: Triangulation by identifying ears in $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Find an ear, output the diagonal, delete the ear tip, repeat.
- Avoid recomputing ear status for all vertices every time
- When you remove a ear tip from the polygon, which vertices might change their ear status?

History of Polygon Triangulation

- Early algorithms: $O\left(n^{4}\right), O\left(n^{3}\right), O\left(n^{2}\right)$
- Several O(n lg n) algorithms known \qquad
- ...
- Many papers with improved bounds
- ...
- 1991: Bernard Chazelle (Princeton) gave an O(n) algorithm
- https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf
- Ridiculously complicated, not practical
- O(1) people actually understand it (and l'm not one of them)
- No algorithm is known that is practical enough to run faster than the $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ algorithms
- OPEN problem
- A practical algorithm that's better than $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$.

An O(n Ig n) Polygon Triangulation Algorithm

- Ingredients
- Consider the special case of triangulating a monotone/unimonotone polygon
- Convert an arbitrary polygon into monotone/unimonotone polygons

Monotone chains

A polygonal chain is \mathbf{x}-monotone if any line perpendicular to x-axis intersects it in one point (one connected component).

Monotone chains

A polygonal chain is \mathbf{x}-monotone if any line perpendicular to \mathbf{x}-axis intersects it in one point (one connected component).

Monotone chains

Not x-monotone

Monotone chains

- Claim: Let u and v be the points on the chain with min/max x-coordinate. The vertices on the boundary of an x-monotone chain, going from u to v, are in x-order.

x-monotone

Monotone chains

x-monotone

As you travel along this chain, your x coordinate is staying the same or increasing

Monotone chains

A polygonal chain is \mathbf{y}-monotone if any line perpendicular to \mathbf{y}-axis intersects it in one point (one connected component).

Monotone chains

A polygonal chain is \mathbf{L}-monotone if any line perpendicular to line \mathbf{L} intersects it in one point (one connected component).

Monotone polygons

A polygon is \mathbf{x}-monotone if its boundary can be split into two x-monotone chains.

Monotone polygons

A polygon is \mathbf{x}-monotone if its boundary can be split into two x-monotone chains.

Monotone polygons

x-monotone
y-monotone

Monotone Mountains

A polygon is an \mathbf{x}-monotone mountain if it is monotone and one of the two chains is a single segment.

Monotone Mountains

A polygon is an \mathbf{x}-monotone mountain if it is monotone and one of the two chains is a single segment.

Monotone mountains are easy to triangulate!

Class work: come up with an algorithm and analyze it.

Monotone mountains are easy to triangulate!

Analysis: $O(n)$ time

Triangulating Monotone Polygons

Similar idea, pick the next vertex in x-order. It can be on upper or lower chain.
$\mathrm{O}(\mathrm{n})$ time

Towards an O(n Ig n) Polygon Triangulation Algorithm

How can we partition a polygon into (uni)monotone pieces?

Intuition

not x-monotone

What makes a polygon not monotone?

Intuition

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after are both smaller or both larger than v (in terms of x-coords).

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after are both smaller or both larger than v (in terms of x-coords).

not x-monotone

- Theorem: If a polygon has no cusps, then it's monotone.
- Proof: Intuitively clear, but proof a little tedious. Maybe later..

We'll get rid of cusps using a trapezoidation of P.

Trapezoid partitions

Shoot vertical rays

- If polygon is above vertex, shoot vertical ray up until reaches boundary
- If f polygon is below vertex, shoot down
- If polygon is above and below vertex, shoot both up and down

Trapezoid partitions

Shoot vertical rays

- If polygon is above vertex, shoot vertical ray up until reaches boundary
- If f polygon is below vertex, shoot down
- If polygon is above and below vertex, shoot both up and down

Trapezoid partitions

Properties

- Each polygon in the partition is a trapezoid, because:
- It has one or two threads as sides.
- If it has two, then they must both hit the same edge above, and the same edge below.
- At most one thread through each vertex $=>\mathrm{O}(\mathrm{n})$ threads $=>\mathrm{O}(\mathrm{n})$ trapezoids

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Diagonals

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Diagonals

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Diagonals

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

We can use the trapezoid partition of P to "split" the cusps

Removing cusps

Removing cusps

1. Identify cusp vertices

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

This creates a partition of P.
Claim: The resulting polygons have no cusps and thus are monotone (by theorem).

$$
a_{2}
$$

Removing cusps

- Another example

Removing cusps

1. Identify cusp vertices

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P

Removing cusps

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. Add obvious diagonal before/after each cusp

Removing cusps

This partitions the polygon into monotone pieces.

Partition P into monotone polygons

1. Identify cusp vertices
2. Compute a trapezoid partition of P
3. Add obvious diagonal before/after each cusp

Towards an O(n Ig n) Polygon Triangulation Algorithm

Towards an O(n Ig n) Polygon Triangulation Algorithm

Partitioning into monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

Partitioning into monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

Claim: All diagonals partition the polygon into monotone mountains.

Partitioning into monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

Claim: The diagonals partition the polygon into monotone mountains.

Claim: The diagonals partition the polygon into monotone mountains.

Proof:

- Each polygon is monotone
- One of the chains must be a segment (because if it had another point, that point would generate a diagonal)

Computing the trapezoid partition

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \operatorname{Ig} \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep
- Events: polygon vertices
- Status structure: edges that intersect current sweep line, in y-order
- Events:

How do we determine the trapezoids?

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \operatorname{Ig} \mathrm{n})$

- Algorithm

