
Computational Geometry

csci3250

Laura Toma

Bowdoin College

Approximate path planning

Outline

Path planning
• Combinatorial
• Approximate

Combinatorial path planning

• Idea: Compute free C-space combinatorially (= exact)
• Approach

• (robot, obstacles) => (point robot, C-obstacles)
• Compute roadmap of free C-space

• any path: trapezoidal decomposition or triangulation
• shortest path: visibility graph

• Comments
• Complete
• Works beautifully in 2D and for some cases in 3D

• Worst-case bound for combinatorial complexity of C-objects in 3D is high
• Unfeasible/intractable for high #DOF

• A complete planner in 3D runs in O(2n^#DOF)

Approximate path planning

• Idea: Since you can’t compute C-free, approximate it
• Approaches

• Graph search strategies
• A*, weighted A*, D*, …

• Sampling-based + roadmaps
• probabilistic roadmaps, rrt, …

• Potential field
• Hybrid

• Comments
• local minima, performance guarantees, completeness? optimality?

Approximate path planning

The concept of completeness is relaxed

• A planner is resolution complete:
• finds a solution, if one exists, with probability —> 1 as the resolution of

the sampling increases

• A planner is probabilistically complete:
• finds a solution, if one exists, with probability —> 1 as computation

time increases

Graph-search strategies

• Sample C-space with uniform grid/lattice
• refined: quadtree/octree
• This essentially “pixelizes" the space (pixels/voxels in C-free)

• Graph is implicit
• given by lattice topology: move +/-1 in each direction, possibly

diagonals as well
• Search the graph for a path from start to end

• use heuristics to guide the search towards the goal
• Graph can be pre-computed (occupancy grid), or computed incrementally

• one-time path planning vs many times
• static vs dynamic environment

Graph-search strategies

• Dijkstra’s algorithm
• computes SSSP(vertex s)
• priority-first search

• d[v] = cost of getting from s to v
• initialize

• d[v] = inf for all v, d[s] = 0
• greedily select the vertex with smallest priority, and relax its edges

• use a priority queue to find smallest priority

Graph-search strategies

Dijkstra(vertex s)

• initialize

• d[v] = infinity for all v, d[s] = 0

• for all v: PQ.insert(<v, d[v]>)

• while PQ not empty

• u = PQ.deleteMin()

• //claim: d[u] is the SP(s,u)

• for each edge (u,v):

• if v not done, and if d[v] > d[u] + edge(u,v):

• d[v] = d[u] + edge(u,v)

• PQ.decreasePriority(v, d[v])

usually not implemented

no need to check if v is done,
because once v is done,

no subsequent relaxation can improve its d[]

Graph-search strategies

Dijkstra(vertex s)

• initialize

• d[v] = infinity for all v, d[s] = 0

• PQ.insert(<s, d[s]>)

• while PQ not empty

• u = PQ.deleteMin()

• for each edge (u,v):

• if isFree(v) and d[v] > d[u] + edge(u,v):

• d[v] = d[u] + edge(u,v)

• PQ.insert(<v, d[v]>)

insert only the start

insert it
(even if it’s already there)

isFree(v): is v in C-free

Graph-search strategies

• Dijkstra’s algorithm
• if only a path to a single vertex is required, a heuristic can be used to guide the

search towards the goal

• A*
• best-first search
• priority f(v) = g(v) + h(v)

• g(v): cost of getting from start to v
• h(v): estimate of the cost from v to goal

• Theorem: If h(v) is “admissible” (h(v) < trueCost(v—>goal)) then A* will return an
optimal solution.

• Dijkstra is (A* with h(v) = 0)
• In general it may be hard to estimate h(v)

• path planning: h(v) = EuclidianDistance(v, goal)

Graph-search strategies

• A* explores fewer vertices to get to the goal, compared to Dijkstra
• The closer h(v) is to the trueCost(v), the more efficient

• Example
• https://www.youtube.com/watch?v=DINCL5cd_w0

• Many A* variants
• weighted A*

• c x h() ==> solution is no worse than (1+c) x optimal
• real-time replanning

• if the underlying graph changes, it usually affects a small part of the graph ==>
don’t run search from scratch

• D*: efficiently recompute SP every time the underlying graph changes
• anytime A*

• use weighted A* to find a first solution ; then use A* with first solution as upper bound
to prune the search

https://www.youtube.com/watch?v=DINCL5cd_w0

Graph-search strategies

• Comments
• Not complete
• The paths may be longer than true shortest path in C-space
• Resolution of lattice may not be sufficient to find a solution

Sampling

• When dimension of C-space is high => hard to construct C-obstacles
exactly

• Much easier to “sample”
• sample(p)= isFree(p): would my robot , if placed in this

configuration, intersect any obstacle?

R

R

C-space: 3Drobot can translate and rotate in 2D

position p: (x, y, theta)

R(8,5,0)

R(8,15,45)

sample (8,5,0): free

sample (8,15,45): not free

How would you write: isFree((x,y,theta)) ?

• You are not given the representation of C-free: Imagine being blindfolded
in a maze

• Sampling: you walk around hitting your head on the walls

• Left long enough, after hitting many walls, you have a pretty good
representation of the maze

• However the space is huge
• e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360

• So you need to be smart about how you chose the points to sample

Sampling

• Roadmap
• Instead of computing C-free explicitly, sample it and compute a

roadmap that captures its connectivity to the best of our (limited)
knowledge

• Roadmap construction phase
• Start with a sampling of points in C-free and try to connect them
• Two points are connected by an edge if a simple quick planner

can find a path between them
• This will create a set of connected components

• Roadmap query phase
• Use roadmap to find path between any two points

Sampling-based planning

Sampling-based roadmap construction

• Generic-Sampling-based-roadmap:
• V = pstart + sample_points(C, n); E = {}
• for each point x in V:

• for each neighbor y in neighbors(x, V):

//try to connect x and y
• if collisionFree(segment xy): E = E + xy

• return (V, E)

• Algorithms differ in
• sample_points(C, n) : how they select the initial random samples from C

• return a set of n points arranged in a regular grid in C
• return random n points

• neighbors(x, V) : how they select the neighbors
• return the k nearest neighbors of x in V
• return the set of points lying in a ball centered at x of radius r

• Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (d, 2d)

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Start with a random sampling of points
in C-free

• Roadmap stored as set of trees for
space efficiency

• trees encode connectivity, cycles
don’t change it. Additional edges
are useful for shortest paths, but
not for completeness

• Augment roadmap by selecting
additional sample points in areas that
are estimated to be “difficult”

• Components
• sampling C-free: random sampling
• selecting the neighbors: within a ball of radius r
• the local planner delta(c,n): is segment cn collision free?
• the heuristical measure of difficulty of a node

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Comments

• Roadmap adjusts to the density of
free space and is more connected
around the obstacles

• Size of roadmap can be adjusted as
needed

• More time spent in the “learning”
phase ==> better roadmap

• Shown to be probabilistically
complete

• probability that the graph
contains a valid solution —> 1
as number of samples
increases

Probabilistic Roadmaps

• One of the leading motion planning technique
• Efficient, easy to implement, applicable to many types of scenes
• Embraced by many groups, many variants of PRM’s, used in many type

of scenes.
• PRM*
• FMT* (fast marching tree)
• …

• Not completely clear which technique better in which circumstances

https://arxiv.org/pdf/1604.07446.pdf

Incremental search planners

• Graph search planners over a fixed lattice:
• may fail to find a path or find one that’s too long

• PRM:
• suitable for multiple-query planners

• Incremental search planners:
• designed for single-query path planning
• incrementally build increasingly finer discretization of the configuration

space, while trying to determine if a path exists at each step
• probabilistic complete, but time may be unbounded

Incremental search planners

• Idea: Incrementally grow a tree
rooted at “start” outwards to explore
reachable configuration space

• RRT (LaValle, 1998)
• https://personalrobotics.ri.cmu.edu/

files/courses/papers/Kuffner00-
rrtconnect.pdf

https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf

http://kevinkdo.com/rrt_demo.html

https://www.youtube.com/watch?v=MT6FyoHefgY

https://www.youtube.com/watch?v=E-IUAL-D9SY

https://www.youtube.com/watch?v=mP4ljdTsvxI

http://kevinkdo.com/rrt_demo.html
https://www.youtube.com/watch?v=MT6FyoHefgY
https://www.youtube.com/watch?v=E-IUAL-D9SY
https://www.youtube.com/watch?v=mP4ljdTsvxI

Potential field methods

• Idea [Latombe et al, 1992]
• Define a potential field
• Robot moves in the direction of steepest descent on potential function

• Ideally potential function has global minimum at the goal, has no local
minima, and is very large around obstacles

• Algorithm outline:
• place a regular grid over C-space
• search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

• Pro:
• Framework can be adapted to any specific scene

• Con:
• can get stuck in local minima
• Potential functions that are minima-free are known, but expensive to compute

• Example: RPP (Randomized path planner) is based on potential functions
• Escapes local minima by executing random walks
• Succesfully used to

• performs riveting ops on plane fuselages
• plan disassembly operations for maintenance of aircraft engines

Self-driving cars

• Both graph search and incremental tree-based
• DARPA urban challenge:

• CMU:
• lattice graph in 4D (x,y, orientation, velocity); graph search with D*

• Stanford: incremental sparse tree of possible maneuvers, hybrid A*
• Virginia Tech: graph discretization of possible maneuvers, search it with A*
• MIT: variant of RRT with biased sampling

https://arxiv.org/pdf/1604.07446.pdf

 A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden,

Michal Cˇáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

https://arxiv.org/pdf/1604.07446.pdf

