Approximate path planning

Computational Geometry
csci3250
Laura Toma
Bowdoin College

Outline

Path planning

- Combinatorial
- Approximate

Combinatorial path planning

- Idea: Compute free C-space combinatorially (= exact)
- Approach
 - (robot, obstacles) => (point robot, C-obstacles)
 - Compute roadmap of free C-space
 - any path: trapezoidal decomposition or triangulation
 - shortest path: visibility graph

Comments

- Complete
- Works beautifully in 2D and for some cases in 3D
 - Worst-case bound for combinatorial complexity of C-objects in 3D is high
- Unfeasible/intractable for high #DOF
 - A complete planner in 3D runs in O(2^{n^#DOF})

Approximate path planning

- Idea: Since you can't compute C-free, approximate it
- · Approaches
 - Graph search strategies
 - A*, weighted A*, D*, ...
 - Sampling-based + roadmaps
 - probabilistic roadmaps, rrt, ...
 - Potential field
 - Hybrid

Comments

local minima, performance guarantees, completeness? optimality?

Approximate path planning

The concept of completeness is relaxed

- A planner is **resolution complete**:
 - finds a solution, if one exists, with probability —> 1 as the resolution of the sampling increases

- A planner is **probabilistically complete**:
 - finds a solution, if one exists, with probability —> 1 as computation time increases

- Sample C-space with uniform grid/lattice
 - refined: quadtree/octree
 - This essentially "pixelizes" the space (pixels/voxels in C-free)
- Graph is implicit
 - given by lattice topology: move +/-1 in each direction, possibly diagonals as well
- Search the graph for a path from start to end
 - use heuristics to guide the search towards the goal
- Graph can be pre-computed (occupancy grid), or computed incrementally
 - one-time path planning vs many times
 - static vs dynamic environment

- Dijkstra's algorithm
 - computes SSSP(vertex s)
 - priority-first search
 - d[v] = cost of getting from s to v
 - initialize
 - $d[v] = \inf \text{ for all } v, d[s] = 0$
 - greedily select the vertex with smallest priority, and relax its edges
 - use a priority queue to find smallest priority

Dijkstra(vertex s)

- initialize
 - d[v] = infinity for all v, d[s] = 0
- for all v: PQ.insert(<v, d[v]>)
- while PQ not empty
 - u = PQ.deleteMin()
 - //claim: d[u] is the SP(s,u)
 - for each edge (u,v):
 - if v not done, and if d[v] > d[u] + edge(u,v):
 - d[v] = d[u] + edge(u,v)
 - PQ.decreasePriority(v, d[v])

no need to check if v is done, because once v is done, no subsequent relaxation can improve its d[]

usually not implemented

Dijkstra(vertex s) initialize • d[v] = infinity for all v, d[s] = 0 $PQ.insert(\langle s, d[s] \rangle)$ insert only the start while PQ not empty • u = PQ.deleteMin() for each edge (u,v): • if isFree(v) and d[v] > d[u] + edge(u,v): d[v] = d[u] + edge(u,v) PQ.insert(<v, d[v]>)____ insert it (even if it's already there)

isFree(v): is v in C-free

- Dijkstra's algorithm
 - if only a path to a single vertex is required, a heuristic can be used to guide the search towards the goal

- A*
 - best-first search
 - priority f(v) = g(v) + h(v)
 - g(v): cost of getting from start to v
 - h(v): estimate of the cost from v to goal
 - Theorem: If h(v) is "admissible" (h(v) < trueCost(v—>goal)) then A* will return an optimal solution.
 - Dijkstra is $(A^* \text{ with } h(v) = 0)$
 - In general it may be hard to estimate h(v)
 - path planning: h(v) = EuclidianDistance(v, goal)

- A* explores fewer vertices to get to the goal, compared to Dijkstra
 - The closer h(v) is to the trueCost(v), the more efficient
- Example
 - https://www.youtube.com/watch?v=DINCL5cd_w0

- Many A* variants
 - weighted A*
 - c x h() ==> solution is no worse than (1+c) x optimal
 - real-time replanning
 - if the underlying graph changes, it usually affects a small part of the graph ==> don't run search from scratch
 - D*: efficiently recompute SP every time the underlying graph changes
 - anytime A*
 - use weighted A* to find a first solution; then use A* with first solution as upper bound to prune the search

Comments

- Not complete
- The paths may be longer than true shortest path in C-space
- Resolution of lattice may not be sufficient to find a solution

Sampling

- When dimension of C-space is high => hard to construct C-obstacles exactly
- Much easier to "sample"
 - sample(p)= isFree(p): would my robot, if placed in this configuration, intersect any obstacle?

robot can translate and rotate in 2D

C-space: 3D

How would you write: isFree((x,y,theta))?

Sampling

- You are not given the representation of C-free: Imagine being blindfolded in a maze
- Sampling: you walk around hitting your head on the walls
- Left long enough, after hitting many walls, you have a pretty good representation of the maze
- However the space is huge
 - e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360
- So you need to be smart about how you chose the points to sample

Sampling-based planning

- Roadmap
 - Instead of computing C-free explicitly, sample it and compute a roadmap that captures its connectivity to the best of our (limited) knowledge
- Roadmap construction phase
 - Start with a sampling of points in C-free and try to connect them
 - Two points are connected by an edge if a simple quick planner can find a path between them
 - This will create a set of connected components
- Roadmap query phase
 - Use roadmap to find path between any two points

Sampling-based roadmap construction

- Generic-Sampling-based-roadmap:
 - $V = p_{start} + sample_points(C, n); E = \{\}$
 - for each point x in V:
 - for each neighbor y in neighbors (x, V):

```
//try to connect x and y
```

- if collisionFree(segment xy): E = E + xy
- return (V, E)
- Algorithms differ in
 - sample_points(C, n): how they select the initial random samples from C
 - return a set of n points arranged in a regular grid in C
 - return random n points
 - neighbors(x, V): how they select the neighbors
 - return the k nearest neighbors of x in V
 - return the set of points lying in a ball centered at x of radius r
 - Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (d, 2^d)

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

- Start with a random sampling of points in C-free
- Roadmap stored as set of trees for space efficiency
 - trees encode connectivity, cycles don't change it. Additional edges are useful for shortest paths, but not for completeness
- Augment roadmap by selecting additional sample points in areas that are estimated to be "difficult"

```
N \leftarrow \emptyset
(1)
(2)
        E \leftarrow \emptyset
(3)
        loop
(4)
            c \leftarrow a randomly chosen free
             configuration
            N_c \leftarrow a set of candidate neighbors
(5)
               of c chosen from N
            N \leftarrow N \cup \{c\}
(6)
            for all n \in N_c, in order of
(7)
              increasing D(c,n) do
               if \neg same\_connected\_component(c, n)
(8)
                \wedge \Delta(c,n) then
                          E \leftarrow E \cup \{(c,n)\}
(9)
                          update R's connected
(10)
                            components
```

Components

- sampling C-free: random sampling
- selecting the neighbors: within a ball of radius r
- the local planner delta(c,n): is segment cn collision free?
- the heuristical measure of difficulty of a node

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

Comments

- Roadmap adjusts to the density of free space and is more connected around the obstacles
- Size of roadmap can be adjusted as needed
- More time spent in the "learning" phase ==> better roadmap
- Shown to be probabilistically complete
 - probability that the graph contains a valid solution —> 1 as number of samples increases

```
N \leftarrow \emptyset
(1)
        E \leftarrow \emptyset
(2)
(3)
        loop
(4)
            c \leftarrow a randomly chosen free
              configuration
            N_c \leftarrow a set of candidate neighbors
(5)
               of c chosen from N
            N \leftarrow N \cup \{c\}
(6)
            for all n \in N_c, in order of
(7)
              increasing D(c,n) do
               if \neg same\_connected\_component(c, n)
(8)
                 \wedge \Delta(c,n) then
                           E \leftarrow E \cup \{(c,n)\}
(9)
                           update R's connected
(10)
```

components

Probabilistic Roadmaps

- One of the leading motion planning technique
- Efficient, easy to implement, applicable to many types of scenes
- Embraced by many groups, many variants of PRM's, used in many type of scenes.
 - PRM*
 - FMT* (fast marching tree)
 - •
- Not completely clear which technique better in which circumstances

Incremental search planners

- Graph search planners over a fixed lattice:
 - may fail to find a path or find one that's too long
- PRM:
 - suitable for multiple-query planners
- Incremental search planners:
 - designed for single-query path planning
 - incrementally build increasingly finer discretization of the configuration space, while trying to determine if a path exists at each step
 - probabilistic complete, but time may be unbounded

Incremental search planners

- Idea: Incrementally grow a tree rooted at "start" outwards to explore reachable configuration space
- RRT (LaValle, 1998)
- https://personalrobotics.ri.cmu.edu/ files/courses/papers/Kuffner00rrtconnect.pdf

```
BUILD_RRT(q_{init})
     T.init(q_{init});
      for k = 1 to K do
          q_{rand} \leftarrow \text{RANDOM\_CONFIG()};
          \text{EXTEND}(\mathcal{T}, q_{rand});
     Return T
\text{EXTEND}(T, q)
     q_{near} \leftarrow \text{NEAREST\_NEIGHBOR}(q, T);
     if NEW\_CONFIG(q, q_{near}, q_{new}) then
          T.add_vertex(q_{new});
          T.add\_edge(q_{near}, q_{new});
          if q_{new} = q then
               Return Reached;
          else
               Return Advanced:
     Return Trapped;
```

Figure 2: The basic RRT construction algorithm.

Figure 3: The EXTEND operation.

http://kevinkdo.com/rrt_demo.html

https://www.youtube.com/watch?v=MT6FyoHefgY

https://www.youtube.com/watch?v=E-IUAL-D9SY

https://www.youtube.com/watch?v=mP4ljdTsvxl

Potential field methods

- Idea [Latombe et al, 1992]
 - Define a potential field
 - Robot moves in the direction of steepest descent on potential function
- Ideally potential function has global minimum at the goal, has no local minima, and is very large around obstacles
- Algorithm outline:
 - place a regular grid over C-space
 - search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

- Pro:
 - Framework can be adapted to any specific scene
- Con:
 - can get stuck in local minima
 - Potential functions that are minima-free are known, but expensive to compute
- Example: RPP (Randomized path planner) is based on potential functions
 - Escapes local minima by executing random walks
 - Succesfully used to
 - performs riveting ops on plane fuselages
 - plan disassembly operations for maintenance of aircraft engines

Self-driving cars

- Both graph search and incremental tree-based
- DARPA urban challenge:
 - CMU:
 - lattice graph in 4D (x,y, orientation, velocity); graph search with D*
 - Stanford: incremental sparse tree of possible maneuvers, hybrid A*
 - Virginia Tech: graph discretization of possible maneuvers, search it with A*
 - MIT: variant of RRT with biased sampling

A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal C*áp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

https://arxiv.org/pdf/1604.07446.pdf