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Path planning  
•  Combinatorial  
•  Approximate



Combinatorial path planning 

• Idea: Compute free C-space combinatorially (= exact)
• Approach

• (robot, obstacles)  => (point robot,  C-obstacles) 
• Compute roadmap of free C-space 

• any path: trapezoidal decomposition or triangulation 
• shortest path: visibility graph 

• Comments
• Complete 
• Works beautifully in 2D and for some cases in 3D  

• Worst-case bound for combinatorial complexity of C-objects in 3D is high  
• Unfeasible/intractable for high #DOF 

• A complete planner in 3D runs in O(2n^#DOF)



Approximate path planning 

• Idea: Since you can’t compute C-free, approximate it  
• Approaches

• Graph search strategies 
• A*, weighted A*, D*, … 

• Sampling-based + roadmaps  
• probabilistic roadmaps, rrt, … 

• Potential field  
• Hybrid  

• Comments
• local minima, performance guarantees, completeness? optimality? 



Approximate path planning 

The concept of completeness is relaxed 

• A planner is resolution complete:  
• finds a solution, if one exists, with probability —> 1 as the resolution of 

the sampling increases 

• A planner is probabilistically complete:   
• finds a solution, if one exists, with probability —> 1 as computation 

time increases



Graph-search strategies

• Sample C-space with uniform  grid/lattice    
• refined: quadtree/octree  
• This essentially “pixelizes" the space (pixels/voxels in C-free) 

• Graph is implicit  
• given by lattice topology: move +/-1 in each direction, possibly 

diagonals as well 
• Search the graph for a path from start to end  

• use heuristics to guide the search towards the goal  
• Graph can be pre-computed (occupancy grid), or computed  incrementally 

• one-time path planning vs many times 
• static vs dynamic environment



Graph-search strategies

• Dijkstra’s algorithm  
• computes SSSP(vertex s) 
• priority-first search 

• d[v] = cost of getting from s to v 
• initialize 

• d[v] = inf for all v, d[s] = 0 
• greedily select the vertex with smallest priority, and relax its edges  

• use a priority queue to find smallest priority 



Graph-search strategies

Dijkstra(vertex s)  

• initialize 

• d[v] = infinity for all v, d[s] = 0 

• for all v: PQ.insert(<v, d[v]>) 

• while PQ not empty  

• u = PQ.deleteMin() 

• //claim: d[u] is the SP(s,u) 

• for each edge (u,v):   

• if v not done, and if d[v] > d[u] + edge(u,v):  

• d[v] = d[u] + edge(u,v) 

• PQ.decreasePriority(v, d[v])

usually not implemented

no need to check if v is done,  
because once v is done,  

no subsequent relaxation can improve its d[]



Graph-search strategies

Dijkstra(vertex s)  

• initialize 

• d[v] = infinity for all v, d[s] = 0 

• PQ.insert(<s, d[s]>) 

• while PQ not empty  

• u = PQ.deleteMin() 

• for each edge (u,v):   

• if isFree(v) and d[v] > d[u] + edge(u,v):  

• d[v] = d[u] + edge(u,v) 

• PQ.insert(<v, d[v]>)

insert only the start

insert it 
(even if it’s already there)

isFree(v): is v in C-free



Graph-search strategies

• Dijkstra’s algorithm  
• if only a path to a single vertex is required, a heuristic can be used to guide the 

search towards the goal  

• A* 
• best-first search  
• priority f(v) = g(v) + h(v)

• g(v):  cost of getting from start to v 
• h(v): estimate of the cost from v to goal  

• Theorem: If h(v) is “admissible” ( h(v) < trueCost(v—>goal)) then A* will return an 
optimal solution.  

• Dijkstra  is  (A* with  h(v) = 0 ) 
• In general it may be hard to estimate h(v) 

•  path planning: h(v) = EuclidianDistance(v, goal)



Graph-search strategies

• A* explores fewer vertices to get to the goal, compared to Dijkstra  
• The closer h(v) is to the trueCost(v), the more efficient 

• Example  
• https://www.youtube.com/watch?v=DINCL5cd_w0 

• Many A* variants  
• weighted A* 

• c x h()  ==> solution is no worse than (1+c) x optimal  
• real-time replanning 

• if the underlying graph changes,  it usually affects a small part of the graph  ==> 
don’t run search from scratch  

• D*: efficiently recompute SP every time the underlying graph changes  
• anytime A* 

• use weighted A* to find a first solution ; then use A* with first solution as upper bound  
to prune the search 

https://www.youtube.com/watch?v=DINCL5cd_w0


Graph-search strategies

• Comments  
• Not complete  
• The paths may be longer than true shortest path in C-space 
• Resolution of lattice may not be sufficient to find a solution 



Sampling

• When dimension of C-space is high =>  hard to construct C-obstacles 
exactly 

• Much easier to “sample”  
• sample(p)= isFree(p): would my robot , if placed in this 

configuration, intersect any obstacle? 



R

R

C-space: 3Drobot can translate and rotate in 2D

position p:  (x, y, theta)

R(8,5,0)

R(8,15,45)

sample (8,5,0): free

sample (8,15,45): not free

How would you write: isFree((x,y,theta)) ?



• You are not given the representation of C-free:  Imagine being blindfolded 
in a maze 

• Sampling: you walk around hitting your head on the walls  

• Left long enough, after hitting many walls, you have a pretty good 
representation of the maze 

• However the space is huge  
• e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360  

• So you need to be smart about how you chose the points to sample

Sampling



• Roadmap 
• Instead of computing C-free explicitly, sample it and compute a 

roadmap that captures its connectivity to the best of our (limited) 
knowledge 

• Roadmap construction phase 
• Start with a sampling of points in C-free and try to connect them  
• Two points are connected by an edge if a simple quick planner 

can find a path between them  
• This will create a set of connected components 

• Roadmap query phase 
• Use roadmap to find path between any two points 

Sampling-based planning 



Sampling-based roadmap  construction  

• Generic-Sampling-based-roadmap:  
• V = pstart + sample_points(C, n); E = {} 
• for each point x in V:  

• for each neighbor y in neighbors(x, V): 

//try to connect x and y  
• if collisionFree(segment xy):  E = E + xy 

• return (V, E)

• Algorithms differ in  
• sample_points(C, n) :  how they select the initial random samples from C 

• return a set of n points arranged in a regular grid in C 
• return random n points 

• neighbors(x, V) : how they select the neighbors 
• return the k nearest neighbors of x in V 
• return the set of points lying in a ball centered at x of radius r 

• Often used:  samples arranged in a 2-dimensional grid, with nearest 4 neighbors (d, 2d)



Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Start with a random sampling of points 
in C-free  

• Roadmap stored as set of trees for 
space efficiency  

• trees encode connectivity, cycles 
don’t change it.  Additional edges 
are useful for shortest paths, but 
not for completeness  

• Augment roadmap by selecting 
additional sample points in areas that 
are estimated to be “difficult”

• Components   
• sampling C-free: random sampling  
• selecting the neighbors: within a ball of radius r 
• the local planner  delta(c,n): is segment cn collision free? 
• the heuristical measure of difficulty of a node 



Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Comments  

• Roadmap adjusts to the density of 
free space and is more connected 
around the obstacles  

• Size of roadmap can be adjusted as 
needed 

• More time spent in the “learning”  
phase ==> better roadmap  

• Shown to be probabilistically 
complete 

• probability that the graph 
contains a valid solution —> 1 
as number of samples 
increases



Probabilistic Roadmaps

• One of the leading motion planning technique  
• Efficient, easy to implement, applicable to many types of scenes 
• Embraced by many groups, many variants of PRM’s, used in many type 

of scenes.  
• PRM* 
• FMT* (fast marching tree) 
• … 

• Not completely clear which technique better in which circumstances

 

https://arxiv.org/pdf/1604.07446.pdf


Incremental search planners

• Graph search planners over a fixed lattice:  
• may fail to find a path  or find one that’s too long  

• PRM:  
• suitable for multiple-query planners 

• Incremental search planners:  
• designed for single-query path planning  
• incrementally build increasingly finer  discretization of the configuration 

space, while trying to determine if a path exists at each step  
• probabilistic complete, but time may be unbounded



Incremental search planners

• Idea: Incrementally grow a tree 
rooted at “start” outwards to explore 
reachable configuration space 

• RRT (LaValle, 1998) 
• https://personalrobotics.ri.cmu.edu/

files/courses/papers/Kuffner00-
rrtconnect.pdf 

https://personalrobotics.ri.cmu.edu/files/courses/papers/Kuffner00-rrtconnect.pdf


http://kevinkdo.com/rrt_demo.html

https://www.youtube.com/watch?v=MT6FyoHefgY

https://www.youtube.com/watch?v=E-IUAL-D9SY

https://www.youtube.com/watch?v=mP4ljdTsvxI

http://kevinkdo.com/rrt_demo.html
https://www.youtube.com/watch?v=MT6FyoHefgY
https://www.youtube.com/watch?v=E-IUAL-D9SY
https://www.youtube.com/watch?v=mP4ljdTsvxI


Potential field methods  

• Idea [Latombe et al, 1992]  
• Define a potential field  
• Robot moves in the direction of steepest descent on potential function  

• Ideally potential function has global minimum at the goal, has no local 
minima, and is very large around obstacles  

• Algorithm outline:  
• place a regular grid over C-space 
• search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs


Potential field methods  

• Pro:  
• Framework can be adapted to any specific scene 

• Con:  
• can get stuck in local minima  
• Potential functions that are minima-free are known, but expensive to compute 

• Example:   RPP (Randomized path planner) is based on potential functions  
• Escapes local minima by executing random walks  
• Succesfully used  to  

• performs riveting ops on plane fuselages  
• plan disassembly operations for maintenance of aircraft engines 



Self-driving cars

• Both graph search and incremental tree-based  
• DARPA urban challenge:  

• CMU:  
• lattice graph in 4D (x,y, orientation, velocity); graph search with D*  

• Stanford:  incremental sparse tree of possible maneuvers, hybrid A* 
• Virginia Tech:  graph discretization of possible maneuvers, search it with A* 
• MIT: variant of RRT with biased sampling 

https://arxiv.org/pdf/1604.07446.pdf

 A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, 

Michal Cˇáp, Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

https://arxiv.org/pdf/1604.07446.pdf



