
Computational Geometry
(csci3250)

Laura Toma
Spring 2017

Bowdoin College

Introduction

• CG deals with algorithms for geometric data

points

Introduction

• CG deals with algorithms for geometric data

lines and line segments

Introduction

• CG deals with algorithms for geometric data

polygons

Introduction

• CG deals with algorithms for geometric data

polygons

Introduction

• CG deals with algorithms for geometric data

2D, 3D..

Class overview

• Convex hull

• comes up in a lot of applications
• objects are approximated by their CH shape

Class overview

• Intersections
• orthogonal line segment intersection

Class overview

• Intersections
• general line segment intersection

Class overview

• Intersections
• general line segment intersection

Class overview

• Visibility
• art gallery problem

What part of the polygon can the guard see?
How many guards necessary to cover this polygon?

Class overview

• Visibility
• art gallery problem

What part of the polygon can the guard see?
How many guards necessary to cover this polygon?

Class overview

• Triangulation and partitioning
• subdivide a complex domain into simpler objects
• simplest object: triangulation

Class overview

• Polygon triangulation
• output a set of diagonals that partition the polygon into triangles

Class overview

• Polygon triangulation
• output a set of diagonals that partition the polygon into triangles

Class overview

• Range searching

Class overview

• Range searching

find all points in this range

Class overview

• Range searching

find all points in this range

Class overview

• Range searching
• range tree
• kd-tree

Class overview

• Proximity problems
• Voronoi diagram

Class overview

• Proximity problems
• Voronoi diagram

Delaunay Triangulations

Class overview

• Motion planning
• find collision-free path from start to end moving among obstacles

Applications

• Computer graphics
• rendering, hidden surface removal, lighting, moving and collision

detection
• Robotics

• path planning involves finding paths that avoid obstacles; this
involves finding intersections

• does this route intersect this obstacle?
• Cell phone data

• stream of coordinates
• e.g. find congestion patterns, model real-time traffic conditions

(done by cell phone apps)
• Spatial database engines

• e.g. Oracle spatial contains specialized data structures for
answering queries on geometric data

• e.g. find all intersections between two sets of line segments (road
and rivers)

Computational geometry

• We’ll talk about algorithms
• Example: the convex hull of a set of n points in the plane

• Properties
• Come up with an algorithm to …

• e.g. find the convex hull of a set of points
• What is the complexity of the problem/result?

• e.g. the convex hull of a set of n points n the plane?
• What is the worst-case running time for the algorithm?
• Can we do better? What is a lower bound for the problem?
• Is the algorithm practical? Can we speed it up by exploiting

special cases of data (that arise in practice)?

Logistics

• Lectures and in-class group work
• Material is theoretical
• All work comes from programming assignments

• expect 5-7 assignments
• in C/C++ (but I’m open to Python)
• can be open-ended
• teams of 2 people

• Textbooks
• TAs and office hours

Today: warmup

Problem:

Given a set of n points in 2D, determine if there exist three that are collinear

• What is the brute force solution?
• Can you refine it?

Finding collinear points

Brute force:
• for all distinct triplets of points pi, pj, pk

• check if they are collinear

• Analysis:
• n chose 3 = O(n3) triplets
• checking if three points are collinear can be done in constant time

==> O(n3) algorithm

Finding collinear points

Improved idea 1:
• initialize array L = empty
• for all distinct pairs of points pi, pj

• compute their line equation (slope, intercept) and store in an array L
• sort array L //note: primarily by slope, secondarily by intercept
• //invariant: identical lines will be consecutive in the sorted array
• scan array L, if find any identical lines ==> there exist 3 collinear points

• Analysis:
• O(n2) pairs
• time: O(n2 lg n)
• space: O(n2)

Finding collinear points

Improved idea 2:
• initialize BBST = empty
• for all distinct pairs of points pi, pj

• compute their line equation (slope, intercept)
• insert (slope, intercept) in BBST; if when inserting you find that (slope,

intercept) is already in the tree, you got 3 collinear points

Note: for this to work, you need to make sure that the key for the BBST is both the
slope and the intercept

• Analysis:
• n chose 2 = O(n2) pairs
• time: O(n2 lg n)
• space: O(n2)

Finding collinear points

 Algorithms

• brute force: O(n3) time, O(1) space

• refined: O(n2 lg n) time, O(n2) space

Questions

• Can you find a solution that runs in O(n2 lg n) time with only linear space?

• Can you improve your solution, for example by making some assumption
about the input?

e.g.: integer coordinates

Integer coordinates

• If points have integer coordinates, we can immediately think of using
hash table instead of BBST

• Hash table:
• insert, delete, search
• O(1) for families of universal hash functions

• Hashing integers

• families of universal hash functions are known for integers which
guarantee no collision with high probability

• O(1) insert/search/delete

• Hashing chars and strings

Improved idea 3:
• initialize HT = empty
• for all distinct pairs of points pi, pj

• compute their line equation (slope, intercept)
• check HT to see if already there => if yes, you got 3 collinear

points

Time?

Space?

Integer coordinates

