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Class overview

e Convex hull

e comes up in a lot of applications

e oObjects are approximated by their CH shape
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e [ntersections

e orthogonal line segment intersection
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Class overview

e T[riangulation and partitioning
e subdivide a complex domain into simpler objects

e simplest object: triangulation



Class overview

* Polygon triangulation

e Output a set of diagonals that partition the polygon into triangles
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Class overview

 Range searching
* range tree

e Kkd-tree
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 Proximity problems

e Voronoi diagram



Delaunay Triangulations
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Class overview

* Motion planning

e find collision-free path from start to end moving among obstacles




Applications

e Computer graphics

* rendering, hidden surface removal, lighting, moving and collision
detection

e Robotics

e path planning involves finding paths that avoid obstacles; this
involves finding intersections

 does this route intersect this obstacle?
e Cell phone data
 stream of coordinates

* e.g. find congestion patterns, model real-time traffic conditions
(done by cell phone apps)

e Spatial database engines

* e.g. Oracle spatial contains specialized data structures for
answering queries on geometric data

* e.g.find all intersections between two sets of line segments (road
and rivers)



Computational geometry

We'll talk about algorithms

Example: the convex hull of a set of n points in the plane

Properties

Come up with an algorithm to ...

 e.9.find the convex hull of a set of points

What is the complexity of the problem/result?

e e.g.the convex hull of a set of n points n the plane?
What is the worst-case running time for the algorithm?
Can we do better”? What is a lower bound for the problem?

Is the algorithm practical? Can we speed it up by exploiting
special cases of data (that arise in practice)?



Logistics

e Lectures and in-class group work
* Material is theoretical
e All work comes from programming assignments
e expect 5-7 assignments
 inC/C++ (but!'m open to Python)
e can be open-ended
e teams of 2 people
e Jextbooks

e TAs and office hours



Today: warmup

Problem:

Given a set of n points in 2D, determine if there exist three that are collinear

 \What is the brute force solution?

e Can you refine it?



Finding collinear points

Brute force:
e for all distinct triplets of points pi, P;, Pk

e check if they are collinear

* Analysis:
e nchose 3 = O(n3) triplets
» checking if three points are collinear can be done in constant time

==> O(n3) algorithm




Finding collinear points

Improved idea 1:
 Initialize array L = empty
« for all distinct pairs of points pj, p;
e compute their line equation (slope, intercept) and store in an array L

* sortarray L

e scan array L, if find any identical lines ==> there exist 3 collinear points

* Analysis:
e O(n?) pairs
* time: O(n®lg n)

 space: O(n?)




Finding collinear points

Improved idea 2:
* initialize BBST = empty
« for all distinct pairs of points pj, p;
e compute their line equation (slope, intercept)

* insert (slope, intercept) in BBST; if when inserting you find that (slope,
intercept) is already in the tree, you got 3 collinear points

Note: for this to work, you need to make sure that the key for the BBST is both the
slope and the intercept

* Analysis:
« nchose 2 = O(n?) pairs
* time: O(n?Ig n)

 space: O(n?)




Finding collinear points

Algorithms

e prute force: O(n3) time, O(1) space
e refined: O(n21g n) time, O(n2) space
Questions

e Can you find a solution that runs in O(n2lg n) time with only linear space?

e Can you improve your solution, for example by making some assumption
about the input?

e.qg.. integer coordinates



Integer coordinates

e |[f points have integer coordinates, we can immediately think of using
hash table instead of BBST

e Hash table:
¢ insert, delete, search

e O(1) for families of universal hash functions

e Hashing integers

e families of universal hash functions are known for integers which
guarantee no collision with high probability

e O(1) insert/search/delete

® Hashing chars and strings



Integer coordinates

Improved idea 3:
e Initialize HT = empty
o for all distinct pairs of points pi, p;
e compute their line equation (slope, intercept)

« check HT to see if already there => if yes, you got 3 collinear
points

Time?

Space”?



