Computational Geometry (csci3250)

Laura Toma
Spring 2017
Bowdoin College

Introduction

- CG deals with algorithms for geometric data

points

Introduction

- CG deals with algorithms for geometric data

lines and line segments

Introduction

- CG deals with algorithms for geometric data

polygons

Introduction

- CG deals with algorithms for geometric data

polygons

Introduction

- CG deals with algorithms for geometric data

2D, 3D..

Class overview

- Convex hull

- comes up in a lot of applications
- objects are approximated by their CH shape

Class overview

- Intersections
- orthogonal line segment intersection

Class overview

- Intersections
- general line segment intersection

Class overview

- Intersections
- general line segment intersection

Class overview

- Visibility
- art gallery problem

What part of the polygon can the guard see?
How many guards necessary to cover this polygon?

Class overview

- Visibility
- art gallery problem

What part of the polygon can the guard see?
How many guards necessary to cover this polygon?

Class overview

- Triangulation and partitioning
- subdivide a complex domain into simpler objects
- simplest object: triangulation

Class overview

- Polygon triangulation
- output a set of diagonals that partition the polygon into triangles

Class overview

- Polygon triangulation
- output a set of diagonals that partition the polygon into triangles

Class overview

- Range searching

Class overview

- Range searching

find all points in this range

Class overview

- Range searching

find all points in this range

Class overview

- Range searching
- range tree
- kd-tree

Class overview

- Proximity problems
- Voronoi diagram

Class overview

- Proximity problems
- Voronoi diagram

Delaunay Triangulations

Class overview

- Motion planning
- find collision-free path from start to end moving among obstacles

Applications

- Computer graphics
- rendering, hidden surface removal, lighting, moving and collision detection
- Robotics
- path planning involves finding paths that avoid obstacles; this involves finding intersections
- does this route intersect this obstacle?
- Cell phone data
- stream of coordinates
- e.g. find congestion patterns, model real-time traffic conditions (done by cell phone apps)
- Spatial database engines
- e.g. Oracle spatial contains specialized data structures for answering queries on geometric data
- e.g. find all intersections between two sets of line segments (road and rivers)

Computational geometry

- We'll talk about algorithms
- Example: the convex hull of a set of n points in the plane
- Properties
- Come up with an algorithm to ...
- e.g. find the convex hull of a set of points
- What is the complexity of the problem/result?
- e.g. the convex hull of a set of n points n the plane?
- What is the worst-case running time for the algorithm?
- Can we do better? What is a lower bound for the problem?
- Is the algorithm practical? Can we speed it up by exploiting special cases of data (that arise in practice)?

Logistics

- Lectures and in-class group work
- Material is theoretical
- All work comes from programming assignments
- expect 5-7 assignments
- in C/C++ (but l'm open to Python)
- can be open-ended
- teams of 2 people
- Textbooks
- TAs and office hours

Today: warmup

Problem:
Given a set of n points in 2D, determine if there exist three that are collinear

- What is the brute force solution?
- Can you refine it?

Finding collinear points

Brute force:

- for all distinct triplets of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}, \mathrm{p}_{\mathrm{k}}$
- check if they are collinear
- Analysis:
- n chose $3=\mathrm{O}\left(\mathrm{n}^{3}\right)$ triplets
- checking if three points are collinear can be done in constant time
$==>O\left(n^{3}\right)$ algorithm

Finding collinear points

Improved idea 1:

- initialize array $L=$ empty
- for all distinct pairs of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$
- compute their line equation (slope, intercept) and store in an array L
- sort array L //note: primarily by slope, secondarily by intercept
- //invariant: identical lines will be consecutive in the sorted array
- scan array L, if find any identical lines $==>$ there exist 3 collinear points
- Analysis:
- $O\left(n^{2}\right)$ pairs
- time: $O\left(n^{2} \lg n\right)$
- space: $O\left(n^{2}\right)$

Finding collinear points

Improved idea 2:

- initialize BBST = empty
- for all distinct pairs of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$
- compute their line equation (slope, intercept)
- insert (slope, intercept) in BBST; if when inserting you find that (slope, intercept) is already in the tree, you got 3 collinear points

Note: for this to work, you need to make sure that the key for the BBST is both the slope and the intercept

- Analysis:
- n chose $2=\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs
- time: $O\left(n^{2} \lg n\right)$
- space: $O\left(n^{2}\right)$

Finding collinear points

Algorithms

- brute force: $O\left(n^{3}\right)$ time, $O(1)$ space
- refined: $O\left(n^{2} \lg n\right)$ time, $O\left(n^{2}\right)$ space

Questions

- Can you find a solution that runs in $O\left(n^{2} \lg n\right)$ time with only linear space?
- Can you improve your solution, for example by making some assumption about the input?
e.g.: integer coordinates

Integer coordinates

- If points have integer coordinates, we can immediately think of using hash table instead of BBST
- Hash table:
- insert, delete, search
- O(1) for families of universal hash functions
- Hashing integers
- families of universal hash functions are known for integers which guarantee no collision with high probability
- O(1) insert/search/delete
- Hashing chars and strings

Integer coordinates

Improved idea 3:

- initialize HT = empty
- for all distinct pairs of points p_{i}, p_{j}
- compute their line equation (slope, intercept)
- check HT to see if already there => if yes, you got 3 collinear points

Time?
Space?

