Computational Geometry
(csci3250 )

Laura Toma
Spring 2017
Bowdoin College



Introduction

« (CG deals with algorithms for geometric data



Introduction

e (CG deals with algorithms for geometric data

ines and line segments



Introduction

« (CG deals with algorithms for geometric data

polygons




Introduction

e (CG deals with algorithms for geometric data

-

polygons



Introduction

« (CG deals with algorithms for geometric data




Class overview

e Convex hull

e comes up in a lot of applications

e oObjects are approximated by their CH shape

®eos ’” ’. 203
. .:::'...



Class overview

e [ntersections

e orthogonal line segment intersection




Class overview

e |ntersections

* general line segment intersection




Class overview

e [ntersections

* general line segment intersection




Class overview

* \Visibility

e art gallery problem

N

What part of the polygon can the guard see”

How many guards necessary to cover this polygon?



Class overview

* \Visibility

e art gallery problem

What part of the polygon can the guard see”

How many guards necessary to cover this polygon?



Class overview

e T[riangulation and partitioning
e subdivide a complex domain into simpler objects

e simplest object: triangulation



Class overview

* Polygon triangulation

e Output a set of diagonals that partition the polygon into triangles




Class overview

* Polygon triangulation

e Output a set of diagonals that partition the polygon into triangles




Class overview

 Range searching



Class overview

 Range searching

find all points in this range



Class overview

 Range searching

find all points in this range



Class overview

 Range searching
* range tree

e Kkd-tree




Class overview

 Proximity problems

e \oronoi diagram




Class overview

 Proximity problems

e Voronoi diagram



Delaunay Triangulations

e
e

— -

e

-
~—a

e

\ Y




Class overview

* Motion planning

e find collision-free path from start to end moving among obstacles




Applications

e Computer graphics

* rendering, hidden surface removal, lighting, moving and collision
detection

e Robotics

e path planning involves finding paths that avoid obstacles; this
involves finding intersections

 does this route intersect this obstacle?
e Cell phone data
 stream of coordinates

* e.g. find congestion patterns, model real-time traffic conditions
(done by cell phone apps)

e Spatial database engines

* e.g. Oracle spatial contains specialized data structures for
answering queries on geometric data

* e.g.find all intersections between two sets of line segments (road
and rivers)



Computational geometry

We'll talk about algorithms

Example: the convex hull of a set of n points in the plane

Properties

Come up with an algorithm to ...

 e.9.find the convex hull of a set of points

What is the complexity of the problem/result?

e e.g.the convex hull of a set of n points n the plane?
What is the worst-case running time for the algorithm?
Can we do better”? What is a lower bound for the problem?

Is the algorithm practical? Can we speed it up by exploiting
special cases of data (that arise in practice)?



Logistics

e Lectures and in-class group work
* Material is theoretical
e All work comes from programming assignments
e expect 5-7 assignments
 inC/C++ (but!'m open to Python)
e can be open-ended
e teams of 2 people
e Jextbooks

e TAs and office hours



Today: warmup

Problem:

Given a set of n points in 2D, determine if there exist three that are collinear

 \What is the brute force solution?

e Can you refine it?



Finding collinear points

Brute force:
e for all distinct triplets of points pi, P;, Pk

e check if they are collinear

* Analysis:
e nchose 3 = O(n3) triplets
» checking if three points are collinear can be done in constant time

==> O(n3) algorithm




Finding collinear points

Improved idea 1:
 Initialize array L = empty
« for all distinct pairs of points pj, p;
e compute their line equation (slope, intercept) and store in an array L

* sortarray L

e scan array L, if find any identical lines ==> there exist 3 collinear points

* Analysis:
e O(n?) pairs
* time: O(n®lg n)

 space: O(n?)




Finding collinear points

Improved idea 2:
* initialize BBST = empty
« for all distinct pairs of points pj, p;
e compute their line equation (slope, intercept)

* insert (slope, intercept) in BBST; if when inserting you find that (slope,
intercept) is already in the tree, you got 3 collinear points

Note: for this to work, you need to make sure that the key for the BBST is both the
slope and the intercept

* Analysis:
« nchose 2 = O(n?) pairs
* time: O(n?Ig n)

 space: O(n?)




Finding collinear points

Algorithms

e prute force: O(n3) time, O(1) space
e refined: O(n21g n) time, O(n2) space
Questions

e Can you find a solution that runs in O(n2lg n) time with only linear space?

e Can you improve your solution, for example by making some assumption
about the input?

e.qg.. integer coordinates



Integer coordinates

e |[f points have integer coordinates, we can immediately think of using
hash table instead of BBST

e Hash table:
¢ insert, delete, search

e O(1) for families of universal hash functions

e Hashing integers

e families of universal hash functions are known for integers which
guarantee no collision with high probability

e O(1) insert/search/delete

® Hashing chars and strings



Integer coordinates

Improved idea 3:
e Initialize HT = empty
o for all distinct pairs of points pi, p;
e compute their line equation (slope, intercept)

« check HT to see if already there => if yes, you got 3 collinear
points

Time?

Space”?



