
3D convex hulls

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

Convex Hull in 3D

The problem: Given a set P of points in 3D, compute their convex hull

convex polyhedron

2D 3D

convex polyhedron

2D 3D

polygon polyhedron

Polyhedron
• region of space whose boundary consists of vertices, edges and faces
• faces intersect properly
• neighborhood of any point on P is homeomorphic to a disk
• surface of P is connected

Convexity

P is convex if for any p, q in P, the segment pq lies entirely in P.

convex non-convex

convex polyhedron : polytop

Platonic solids

• Regular polygon
• equal sides and angles

• Regular polytop
• faces are congruent regular polygons and the number of faces incident to

each vertex is the same (and equal angles)
• Surprisingly, there exist only 5 regular polytops

Euler’s formula

• Euler noticed a remarkable regularity in the number of vertices, edges and
faces of a polyhedron (w/o holes).

• Euler’s formula: V - E + F = 2

• One proof idea:
• flatten the polygon to a plane
• prove the formula for a tree
• prove for any planar graph by induction on E

Euler’s formula

• Consider a polyhedron P with V=n vertices
• Triangulate its faces. This maximizes E and F.

• V-E+F=2
• 3F=2E …..
• ..
• E = 3V - 6 = O(n)
• F = 2V - 4 = O(n)

• The number of vertices, edges and faces in a polyhedron are linearly related.

Some properties

• All faces of CH are extreme (and all extreme edges of P are on the CH)
• All internal angles between faces are < 180
• ..

2D 3D

From 2D to 3D

2D 3D

Naive O(n3)

Gift wrapping O(nh)

Graham scan O(n lg n)

Quickhull O(n lg n), O(n2)

Incremental O(n lg n)

Divide-and-
conquer O(n lg n)

?

Algorithm
• For every triplet of points (pi,pj,pk):

• check if plane defined by it is extreme
• if it is, add it to the list of CH faces

• Analysis: O(n4)

Naive algorithm in 3D

Gift wrapping in 3D

• YouTube
• Video of CH in 3D (by Lucas Benevides)
• Fast 3D convex hull algorithms with CGAL

https://www.youtube.com/watch?v=4dBHgu9zNFg
https://www.youtube.com/watch?v=qgvtZtk7Zh8

Algorithm
• find a face guaranteed to be on the CH
• REPEAT

• find an edge e of a face f that’s on the CH, and such that the face on
the other side of e has not been found.

• for all remaining points pi, find the angle of (e,pi) with f
• find point pi with the minimal angle; add face (e,pi) to CH

Gift wrapping in 3D

• Analysis: O(n x F), where F is the number of faces on CH

Algorithm
• find a face guaranteed to be on the CH
• REPEAT

• find an edge e of a face f that’s on the CH, and such that the face on
the other side of e has not been found.

• for all remaining points pi, find the angle of (e,pi) with f
• find point pi with the minimal angle; add face (e,pi) to CH

Gift wrapping in 3D

• Implementation details
• sketch more detailed pseudocode
• finding first face?
• what data structures do you need? how to keep track of vertices, edges,

faces? how to store the connectivity of faces?

From 2D to 3D

2D 3D

Naive O(n3) O(n4)

Gift wrapping O(nh) O(n x F)

Graham scan O(n lg n) no !!

Quickhull O(n lg n), O(n2)

Incremental O(n lg n)

Divide-and-
conquer O(n lg n)

?

From 2D to 3D

2D 3D

Naive O(n3) O(n4)

Gift wrapping O(nh) O(n x F)

Graham scan O(n lg n) no

Quickhull O(n lg n), O(n2) yes

Incremental O(n lg n) O(n2)

Divide-and-
conquer O(n lg n) O(n lg n)

!!

3d hull: divide & conquer

The same idea as 2D algorithm
• divide points in two halves P1 and P2
• recursively find CH(P1) and CH(P2)
• merge

• If merge in O(n) time ==> O(n lg n) algorithm

Merge

• How does the merged hull look like?

cylinder without end caps

Merge

• Idea: Start with the lower tangent, wrap around, find one face at a time.

• Let PI be a plane that supports the hull from below

Claim:
• When we rotate PI around ab, the first vertex hit c must be a vertex adjacent to a or b
• c has the smallest angle among all neighbors of a,b

Merge

1. Find a common tangent ab

Merge

a

b

1. Find a common tangent ab
• Now we need to find a triangle abc. Thus ac is an edge either on the left hull

or on the right hull.

Merge

a

b
c

1. Find a common tangent ab
• Now we need to find a triangle abc. Thus ac is an edge either on the left hull

or on the right hull.
• Now we have a new edge ac that’s a tangent. Repeat.

Merge

a

b
c

1. Find a common tangent ab
• Now we need to find a triangle abc. Thus ac is an edge either on the left hull

or on the right hull.
• Now we have a new edge ac that’s a tangent. Repeat.

Merge

a

b
c

d

1. Find a common tangent ab
• Now we need to find a triangle abc. Thus ac is an edge either on the left hull

or on the right hull.
• Now we have a new edge ac that’s a tangent. Repeat.

Merge

a

b
c

d
e

1. Find a common tangent ab
• Now we need to find a triangle abc. Thus ac is an edge either on the left hull

or on the right hull.
• Now we have a new edge ac that’s a tangent. Repeat.

Merge

a

b
c

d
e

1. Find a common tangent ab

2. Start from ab and wrap around, to create the cylinder of triangles that connects
the two hulls A and B

3. Find and delete the hidden faces that are “inside” the cylinder

Merge

The hidden faces

• start from the edges on the boundary of the cylinder
• BFS or DFS faces “towards” the cylinder
• all faces reached are inside

3d hull: divide & conquer

• Theoretically important and elegant
• Of all algorithms that extend to 3D, DC& is the only one that achieves

optimal (n lg n)
• Difficult to implement
• The slower algorithms (quickhull, incremental) preferred in practice

Incremental 3D hull

Incremental

• CH = {p1,p2,p3}
• for i= 4 to n

• //CH represents the CH of p1..pi-1
• add pi to CH and update CH to represent the CH of p1..pi

2D 3D

p

a

b

c

p is right of (in front) abcps is left of (behind) abc

p

Point in front/behind face

abc visible from pabc not visible from p

6 signedArea(a,b,c) = det
a.x a.y 1
b.x b.y 1
c.x c.y 1

c

a

b

negative area
(c right/in front of ab)

positive area
(c left/behind ab)

c

2D

6 signedVolume(a,b,c,d) = det
a.x a.y a.z 1
b.x b.y b.z 1
c.x c.y c.z 1
d.x d.y d.z 1

a

b

c
d

negative volume
(d in front of face)

positive volume
(p behind face)

3D

• Assume all faces oriented counterclockwise (their normals
determined by the right-hand rule point towards the outside of P)

is_visible(a,b,c,p): return signedVolume(a,b,c,p) < 0

p

a

b

c

negative volume
(p in front of face)

positive volume
(p behind face)

p

Incremental

3D

The visible faces are precisely those that need to be discarded
The edges on the boundary of the visible region are the basis of the cone

Incremental

Algorithm: incremental hull 3d

• initialize H = p1, p2, p3, p4

• for i = 5 to n do:

• for each face f of H do:

• compute volume of tetrahedron formed by (f,pi)
• if volume < 0: f is visible

• if no faces are visible

• discard pi (pi must be inside H)

• else

• find border edge of all visible faces

• for each border edge e construct a face (e,pi) and add to H

• for each visible face f: delete f from H

