Convex polygon intersection

- The problem: Given two convex polygons, compute their intersection
- Key component in other algorithms, such as
- computing intersection of half-planes
- finding the kernel of a polygons
- linear programming problems

Convex polygon intersection

- Claim: Intersection of two convex polygons P and Q has complexity $O(|P|+|Q|)$
- Algorithm outline
- choose edge A on P, B on Q arbitrarily
- repeat
- if A intersects B
- print intersection (and update inside flag)
- advance A or B
- until both A and B cycles their polygons

Advancing

- Idea: the edges A and B chase each other, adjusting so that they meet at each intersection

Advancing

- A directed edge
- $H(A)$: left half-plane of A

point towards A point away from A

Advancing

- Idea: the edges A and B chase each other, adjusting so that they meet at each intersection
- if both A and B point towards each other
- advance whichever is outside the other
- if B points towards A and A does not point towards B
- advance B
- if A points towards B and B does not point towards A
- advance A
- if neither A and B point towards each other
- advance whichever is outside the other

A points towards B: advance A

A points away from B, B points away from A: advance whichever is outside the other

A points away from B, B points away from A: advance whichever is outside the other

A points towards B: advance A

A points towards B: advance A

A points to B and B towards A : advance B

A points to B, B points to A : advance B

A points to B : advance A

