Convex polygon intersection

- The problem: Given two convex polygons, compute their intersection
- Key component in other algorithms, such as
 - computing intersection of half-planes
 - finding the kernel of a polygons
 - linear programming problems

Convex polygon intersection

- Claim: Intersection of two convex polygons P and Q has complexity O(|P| + |Q|)
- Algorithm outline
 - choose edge A on P, B on Q arbitrarily
 - repeat
 - if A intersects B
 - print intersection (and update inside flag)
 - advance A or B
 - until both A and B cycles their polygons

Advancing

• Idea: the edges A and B chase each other, adjusting so that they meet at each intersection

Advancing

- A directed edge
- H(A): left half-plane of A

point towards A point away from A

Advancing

- Idea: the edges A and B chase each other, adjusting so that they meet at each intersection
- if both A and B point towards each other
 - advance whichever is outside the other
- if B points towards A and A does not point towards B
 - advance B
- if A points towards B and B does not point towards A
 - advance A
- if neither A and B point towards each other
 - advance whichever is outside the other

A points towards B: advance A

A points away from B, B points away from A: advance whichever is outside the other

A points away from B, B points away from A: advance whichever is outside the other

A points to B, B points to A: advance B

A points to B: advance A

B points to A: advance B

