
Finding closest pair

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

Hint: divide-and-conquer

Divide-and-conquer

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_first_half = mergesort(array A1)

• sorted_second_half = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

• return result

Divide-and-conquer

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_first_half = mergesort(array A1)

• sorted_second_half = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

• return result

Analysis: T(n) = 2T(n/2) + O(n) => O(n lg n)

In general

DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

Analysis: T(n) = 2T(n/2) + O(merge phase)

DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

In general

• if merge phase is O(n): T(n) = 2T(n/2) + O(n) => O(n lg n)

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase)

Divide-and-conquer for closest pair

Divide-and-conquer for closest pair
• find vertical line that splits P in half

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

P1 P2

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

P1 P2

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• …… //NOW WHAT?

How can you find closest pair in P?

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = find closest pair in P1

• d2 = find closest pair in P2

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

1. Is this correct?
2. Running time?

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = find closest pair in P1

• d2 = find closest pair in P2

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

Is this correct?
YES. The closest pair is either:
• both points are in P1, and then it is found by the recursive call on P1
• both points are in P2, and then it is found by the recursive call on P2
• one point is in P1 and one in P2, and then it is found in the merge phase, because the merge phase consider

all such pairs

Divide-and-conquer for closest pair
• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = find closest pair in P1

• d2 = find closest pair in P2

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

Running time?
• T(n) = 2T(n/2) + O(n2) => solves to O(n2)

Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?

p
q

Can (p,q) be the closest pair?

Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?

p
q

Why not? Where do p,q need to lie in order to be the closest pair?

d1

d2

Can (p,q) be the closest pair?

Notation: d = min {d1, d2}

p
q

d2

d1

In order for dist(p,q) to be smaller than d, it must be that both the horizontal
and the vertical distance between p and q must be smaller than d.

Proof:

p
q

d2

d1

Claim: In order to be candidates for closest pair, points p, q must lie
in the d-by-d strip centered at the median.

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

• …..

Refining the merge

Fill in the details of the new algorithm’s merge phase and analyze it.

p
q

d2

d1

Refining the merge

p
q

d2

d1

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’

• for each point q in P2’

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

• Show an example where the strip may contain Omega(n) points.

Refining the merge

p
q

d2

d1

• What does this imply for the running time?

• Ok, so this is not yet enough
• But … we also know that the vertical distance between p and q cannot be

greater than d.

Refining the merge

p q
d d

d d

• Consider a point p in the stripe. How many points below it, at most, could be
candidates for the closest pair (p,q)?

Refining the merge

d d

• Consider a point p in the stripe. How many points below it, at most, could be
candidates for the closest pair (p,q)?

Refining the merge

p q
d d

d d

any pair of points in
the left side must be
at least d away

any pair of points in
the right side must
be at least d away

p,q must lie in 2d-by-d rectangle

Claim:
A point p needs to check at most 5 points following p in y-order.

Refining the merge

d d

p

Note: Assume no duplicate points.

• Put all these together and write down the algorithm.
• Analyze the running time.

Refining the merge

Refining the merge
closestPair(P)

//divide

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• call closestPair(P1); let d1 be the returned closest distance

• call closestPair(P2); let d2 be the returned closest distance

//merge

• let d = min{d1, d2}

• Strip= empty

• for all p in P1: if xp > x_vertical - d: add p to Strip

• for all p in P2: if xp < x_vertical + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Refining the merge
closestPair(P)

//divide

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• call closestPair(P1); let d1 be the returned closest distance

• call closestPair(P2); let d2 be the returned closest distance

//merge

• let d = min{d1, d2)

• Strip= empty

• for all p in P1: if xp > x_vertical - d: add p to Strip

• for all p in P2: if xp < x_vertical + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Analysis: ?

Refining the merge
closestPair(P)

//divide

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• call closestPair(P1); let d1 be the returned closest distance

• call closestPair(P2); let d2 be the returned closest distance

//merge

• let d = min{d1, d2)

• Strip= empty

• for all p in P1: if xp > x_vertical - d: add p to Strip

• for all p in P2: if xp < x_vertical + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Analysis: T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

• Avoiding the sort

Divide-and-conquer for closest pair

• Describe in full detail how to avoid sorting at every level, and give the
detailed pseudocode. Include an explanation for how to find the vertical line
that splits P in half.

Divide-and-conquer for closest pair

