Finding closest pair

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

®p7 3
pg .
e
®p10 06" 2
e
= o 01
. e
P3 ®
P9

Po [P1 | P2 |P3 [Pa] Ps

'p1o

Given an array of points in 2D, find the closest pair.

®ps
3
B
®p7 3
Po
@
@ ® gz
06" 3 o
B
®p4
@ e p; .
@
of . ®
'p9 'ps

'p1o

Given an array of points in 2D, find the closest pair.

®ps
S
3
®p7 3
Po
S
®e B2
06" 3 o
3
®p4
3 e p; .
]
ok . ®
'p9 'ps

Given an array of points in 2D, find the closest pair.

Brute force:

e mindist = VERY_LARGE_VALUE

e for all distinct pairs of points pi, p;
e d = distance (pi, p))
e if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:

e mindist = VERY_LARGE_VALUE

e for all distinct pairs of points pi, p;
e d = distance (pi, p))
e if (d< mindist): mindist=d

e Analysis:

e O(n2) pairs ==> 0O(n?) time

Given an array of points in 2D, find the closest pair.

Brute force:

e mindist = VERY_LARGE_VALUE

e for all distinct pairs of points pi, p;
e d = distance (pi, p))
e if (d< mindist): mindist=d

Can we do better
than O(n2)?

e Analysis:

e O(n2) pairs ==> 0O(n?) time

Given an array of points in 2D, find the closest pair.

Brute force:

e mindist = VERY_LARGE_VALUE

e for all distinct pairs of points pi, p;
e d = distance (pi, p))
e if (d< mindist): mindist=d

Can we do better
than O(n2)?

e Analysis:

e O(n2) pairs ==> 0O(n?) time

Hint: divide-and-conquer

Divide-and-conquer

mergesort(array A)
o if A has 1 element, theres nothing to sort, so just return it
e else
//divide input A into two halves, Al and A2
e Al = first half of A
e A2 = second half of A

//sort recursively each half
* sorted_first_half = mergesort(array Al)

* sorted_second_half = mergesort(array A2)
//merge
* result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

e return result

Divide-and-conquer

mergesort(array A)
o if A has 1 element, theres nothing to sort, so just return it
e else
//divide input A into two halves, Al and A2
e Al = first half of A
e A2 = second half of A

//sort recursively each half
* sorted_first_half = mergesort(array Al)

* sorted_second_half = mergesort(array A2)
//merge
* result = merge_sorted_arrays(sorted_first_half, sorted_second_half)

e return result

Analysis: T(n) = 2T(n/2) + O(n) => O(nlgn)

In general

DC(input P)
if P is small, solve and return

else

divide input P info two halves, P1 and P2

resultl = DC(P1)
result2 = DC(P2)

do_something_to_figure_out_result_for_P

return result

Analysis: T(n) = 2T(n/2) + O()

In general

DC(input P)
if P is small, solve and return

else

divide input P info two halves, P1 and P2

resultl = DC(P1)
result2 = DC(P2)

do_something_to_figure_out_result_for_P

return result

Analysis: T(n) = 2T(n/2) + O()

* if merge phase is : T(n) = 2T(n/2) + > 0O(nlgn)

* if merge phase is : T(n) = 2T(n/2) + => O(n Ig2n)

Divide-and-conquer for closest pair

Divide-and-conquer for closest pair

o find vertical line that splits P in half

Divide-and-conquer for closest pair

e find vertical line that splits P in half
¢ let P1, P2 = set of points to the left/right of line

Divide-and-conquer for closest pair

e find vertical line that splits P in half
¢ let P1, P2 = set of points to the left/right of line
e recursively find closest pair in Pl

Divide-and-conquer for closest pair

find vertical line that splits P in half

let P1, P2 = set of points to the left/right of line
recursively find closest pair in Pl

recursively find closest pair in P2

Divide-and-conquer for closest pair

e find vertical line that splits P in half

¢ let P1, P2 = set of points to the left/right of line
e recursively find closest pair in Pl

e recursively find closest pair in P2

...... [INOW WHAT?

A

How can you find closest pair in P?

Divide-and-conquer for closest pair

find vertical line that splits P in half
let P1, P2 = set of points to the left/right of line
di = find closest pair in Pl
dz = find closest pair in P2
for each p in Py, for each q in P
e compute distance d(p,q)
e mindist = min{di, dz, d(p.q)}

1. Is this correct?
2. Running time?

Divide-and-conquer for closest pair

e find vertical line that splits P in half
 let P1, P2 = set of points to the left/right of line
e d; = find closest pair in Pl
e d> = find closest pair in P2
e for each p in Py, for each q in P:
e compute distance d(p,q)
e mindist = min{di, d2, d(p.q)}

Is this correct?

YES. The closest pair is either: ®

* Dboth points are in P1, and then it is found by the recursive*call on P1

* both points are in P2, and then it is found by the recursive call on P2

* one pointisin P1and one in P2, and then it is found in the merge phase, because the merge phase consider
all such pairs

Divide-and-conquer for closest pair

find vertical line that splits P in half
let P1, P2 = set of points to the left/right of line
di = find closest pair in Pl
dz = find closest pair in P2
for each p in Py, for each q in P
e compute distance d(p,q)
e mindist = min{di, dz, d(p.q)}

Running time?
e T(n) =2T(n/2) + O(N2) => solves to O(n?)

Refining the merge

Do we need to examine all pairs (p,q), with p in P4, g in P2?

R
® .
@

Can (p,q) be the closest pair?

Refining the merge

Do we need to examine all pairs (p,q), with p in P4, g in P2?

dq

'do

Can (p,q) be the closest pair?
Why not? Where do p,q need to lie in order to be the closest pair?

Notation: d = min {d1, d2}

In order for dist(p,q) to be smaller than d, it must be that both the horizontal
and the vertical distance between p and g must be smaller than d.

d+

Claim: In order to be candidates for closest pair, points p, g must lie
In the d-by-d strip centered at the median.

®
@
®
d1"
R ~
O
g
9
O
®
- ::dz
®

Proof:

Refining the merge

e find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line
e recursively find closest pair in Pl

e recursively find closest pair in P2
® e ‘
A
®
©
di o
o’ ’
@
9
g
o
’
2 id2
o
O

----pd---- P

Fill in the details of the new algorithm’s merge phase and analyze it.

Refining the merge

e traverse P; and select all points P’ in the strip °

e traverse P; and select all points P;" in the strjip
e for each p in P/’

e for each point q in P;’ ®e
e compute distance d(p,q) di,g
 mindist = min{d;, dz, d(p.q)} ¢ o
®
o
®

Refining the merge

e Show an example where the strip may contain Omega(n) points.

@
®
® ®
@
. ® @
|9
o e’ . ®
O
@
@ p. .
® — o
® ,.':dz
®
®

 What does this imply for the running time?

Refining the merge

e Ok, so this is not yet enough
e But ... we also know that the vertical distance between p and g cannot be
greater than d.

®
®
®
Polal el
d " d
@

Refining the merge

e Consider a point p in the stripe. How many points below it, at most, could be
candidates for the closest pair (p,q)?

Refining the merge

e Consider a point p in the stripe. How many points below it, at most, could be

candidates for the closest pair (p,q)?

p,g must lie in 2d-by-d rectangle

o)

d d

any pair of points in D
the left side must be
at least d away

any pair of points in
the right side must
be at least d away

Refining the merge

Claim:
A point p needs to check at most 5 points following p in y-order.

5’ Note: Assume no duplicate points.
@,
®
: T
: P
______)
«
-9
o

Refining the merge

* Put all these together and write down the algorithm.
* Analyze the running time.

Refining the merge

closestPair(P)
//divide
e find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line
e call closestPair(P;); let d; be the returned closest distance
e call closestPair(P2); let d2 be the returned closest distance
//merge
 let d = min{di, dz}
* Strip= empty
e forall pin Pr if xp, > x_vertical - d: add p to Strip
e for all pin P2 if xp < x_vertical + d: add p to Strip
e sort Strip by y-coord
* initialize mindist=d
e for each p in Strip in sorted order
e compute its distance to the 5 points that come after it in
sorted order
e if any of these is smaller than mindist, update mindist

e return mindist

Refining the merge

closestPair(P)
//divide
e find vertical line that splits P in half
* let P1, P2 = set of points to the left/right of line
e call closestPair(P;); let d; be the returned closest distance
e call closestPair(P2); let d2 be the returned closest distance
//merge
* let d = min{d,, d2) :
e Strip= empty
e for all pin Pi if x, > x_vertical - d: add p to Strip
e for all pin P2 if xp < x_vertical + d: add p to Strip

* initialize mindist=d
e for each p in Strip in sorted order
e compute its distance to the 5 points that come after it in
sorted order
e if any of these is smaller than mindist, update mindist ""O'l'*‘"d"

e return mindist

Analysis: ?

Refining the merge

closestPair(P)
//divide
e find vertical line that splits P in half
* let P, P, = set of points to the left/right of line
e call closestPair(P;); let d; be the returned closest distance
e call closestPair(P2); let d2 be the returned closest distance
//merge
* let d = min{d,, d2)
* Strip= empty
e for all pin Pi if xp > x_vertical - d: add p to Strip
e for all pin P2 if xp < x_vertical + d: add p to Strip
e sort Strip by y-coord
* initialize mindist=d
e for each p in Strip in sorted order
e compute its distance to the 5 points that come after it in
sorted order
e if any of these is smaller than mindist, update mindist

e return mindist

Analysis: T(n) = 2T(n/2) + O(n Ig n) => O(n lg2n)

Divide-and-conquer for closest pair

 Avoiding the sort

Divide-and-conquer for closest pair

e Describe in full detail how to avoid sorting at every level, and give the
detailed pseudocode. Include an explanation for how to find the vertical line
that splits P in half.

