Finding closest pair

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Given an array of points in 2D, find the closest pair.

Given an array of points in 2D, find the closest pair.

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$
- $d=\operatorname{distance}\left(p_{i}, p_{j}\right)$
- if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$
- $d=\operatorname{distance}\left(p_{i}, p_{j}\right)$
- if ($d<$ mindist): mindist=d
- Analysis:
- $O\left(n^{2}\right)$ pairs $==>O\left(n^{2}\right)$ time

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_{i}, p_{j}
- $d=$ distance $\left(p_{i}, p_{j}\right)$
- if (d< mindist): mindist=d
- Analysis:
- $O\left(n^{2}\right)$ pairs $==>O\left(n^{2}\right)$ time

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_{i}, p_{j}
- $d=\operatorname{distance}\left(p_{i}, p_{j}\right)$
- if (d< mindist): mindist=d
- Analysis:
- $O\left(n^{2}\right)$ pairs $==>O\left(n^{2}\right)$ time

Hint: divide-and-conquer

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else
//divide input A into two halves, A1 and A2
- $A 1=$ first half of A
- $A 2=$ second half of A
//sort recursively each half
- sorted_first_half = mergesort(array Al)
- sorted_second_half = mergesort(array A2)
//merge
- result = merge_sorted_arrays(sorted_first_half, sorted_second_half)
- return result

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else
//divide input A into two halves, A1 and A2
- $A l=$ first half of A
- $A 2=$ second half of A
//sort recursively each half
- sorted_first_half = mergesort(array Al)
- sorted_second_half = mergesort(array A2)
//merge
- result = merge_sorted_arrays(sorted_first_half, sorted_second_half)
- return result

Analysis: $T(n)=2 T(n / 2)+O(n)=>(n \lg n)$

In general

```
DC(input P)
    if P is small, solve and return
    else
        //divide
        divide input P into two halves, P1 and P2
        //recurse
        result1 = DC(P1)
        result2 = DC(P2)
        //merge
        do_something_to_figure_out_result_for_P
        return result
```

Analysis: $T(n)=2 T(n / 2)+O(m e r g e ~ p h a s e)$

In general

DC(input P)

if P is small, solve and return
else
//divide
divide input P into two halves, P 1 and P 2
//recurse
result1 = DC(P1)
result2 $=$ DC(P2)
//merge
do_something_to_figure_out_result_for_P
return result

Analysis: $T(n)=2 T(n / 2)+O(m e r g e ~ p h a s e)$

- if merge phase is $O(n): \quad T(n)=2 T(n / 2)+O(n) \quad=>O(n \lg n)$
- if merge phase is $O(n \lg n): T(n)=2 T(n / 2)+O(n \| g n)=>O\left(n \lg ^{2 n}\right)$

Divide-and-conquer for closest pair

Divide-and-conquer for closest pair

- find vertical line that splits P in half

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2
- //NOW WHAT?

How can you find closest pair in P?

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- $d_{1}=$ find closest pair in P1
- $d_{2}=$ find closest pair in P2
- for each p in P_{1}, for each q in P_{2}
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$

1. Is this correct?
2. Running time?

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- $d_{1}=$ find closest pair in P1
- $d_{2}=$ find closest pair in P2
- for each p in P_{1}, for each q in P_{2}
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$

Is this correct?
YES. The closest pair is either:

- both points are in P1, and then it is found by the recursive call on P1.
- both points are in P2, and then it is found by the recursive call on P2
- one point is in P1 and one in P2, and then it is found in the merge phase, because the merge phase consider all such pairs

Divide-and-conquer for closest pair

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- $d_{1}=$ find closest pair in P1
- $d_{2}=$ find closest pair in P2
- for each p in P_{1}, for each q in P_{2}
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$

Running time?

- $T(n)=2 T(n / 2)+O\left(n^{2}\right)=>$ solves to $O\left(n^{2}\right)$

Refining the merge

Do we need to examine all pairs (p, q), with p in P_{1}, q in P_{2} ?

Can (p, q) be the closest pair?

Refining the merge

Do we need to examine all pairs (p, q), with p in P_{1}, q in P_{2} ?

Can (p, q) be the closest pair?
Why not? Where do p,q need to lie in order to be the closest pair?

Notation: $\mathrm{d}=\min \left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$
In order for $\operatorname{dist}(\mathrm{p}, \mathrm{q})$ to be smaller than d , it must be that both the horizontal and the vertical distance between p and q must be smaller than d .

Claim: In order to be candidates for closest pair, points p, q must lie in the d-by-d strip centered at the median.

Refining the merge

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in Pl
- recursively find closest pair in P2
-

- q
$\stackrel{i}{\vdots} \mathrm{~d}_{2}$

Fill in the details of the new algorithm's merge phase and analyze it.

Refining the merge

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2
- traverse P_{1} and select all points P_{1}^{\prime} in the strip
- traverse P_{2} and select all points P_{2}^{\prime} in the strip
- for each p in $P_{1}{ }^{\prime}$
- for each point q in $P_{2}{ }^{\prime}$
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$

Refining the merge

- Show an example where the strip may contain Omega(n) points.

- What does this imply for the running time?

Refining the merge

- Ok, so this is not yet enough
- But ... we also know that the vertical distance between p and q cannot be greater than d.

Refining the merge

- Consider a point p in the stripe. How many points below it, at most, could be candidates for the closest pair (p, q) ?

Refining the merge

- Consider a point p in the stripe. How many points below it, at most, could be candidates for the closest pair (p, q) ?

Refining the merge

Claim:

A point p needs to check at most 5 points following p in y-order.

Note: Assume no duplicate points.

Refining the merge

- Put all these together and write down the algorithm.
- Analyze the running time.

Refining the merge

closestPair(P)

//divide

- find vertical line that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line
- call closestPair $\left(P_{1}\right)$; let d_{1} be the returned closest distance
- call closestPair $\left(P_{2}\right)$; let d_{2} be the returned closest distance //merge
- let $d=\min \left\{d_{1}, d_{2}\right\}$
- Strip= empty
- for all p in $P_{1:}$ if $x_{p}>x$ _vertical - d: add p to Strip
- for all p in P_{2} if $x_{p}<x$ _vertical $+d$: add p to Strip
- sort Strip by y-coord
- initialize mindist=d
- for each p in Strip in sorted order
- compute its distance to the 5 points that come after it in sorted order
- if any of these is smaller than mindist, update mindist

- return mindist

Refining the merge

closestPair(P)

//divide

- find vertical line that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line
- call closestPair $\left(P_{1}\right)$; let d_{1} be the returned closest distance
- call closestPair $\left(P_{2}\right)$; let d_{2} be the returned closest distance //merge
- let $d=\min \left\{d_{1}, d_{2}\right)$
- Strip= empty
- for all p in $P_{1:}$ if $x_{p}>x$ _vertical - d: add p to Strip
- for all p in P_{2} if $x_{p}<x$ _vertical $+d$: add p to Strip
- sort Strip by y-coord
- initialize mindist=d
- for each p in Strip in sorted order
- compute its distance to the 5 points that come after it in sorted order
- if any of these is smaller than mindist, update mindist

- return mindist

Refining the merge

closestPair(P)

//divide

- find vertical line that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line
- call closestPair $\left(P_{1}\right)$; let d_{1} be the returned closest distance
- call closestPair $\left(P_{2}\right)$; let d_{2} be the returned closest distance //merge
- let $d=\min \left\{d_{1}, d_{2}\right)$
- Strip= empty
- for all p in $P_{1:}$ if $x_{p}>x$ _vertical - d: add p to Strip
- for all p in P_{2} if $x_{p}<x$ _vertical $+d$: add p to Strip
- sort Strip by y-coord
- initialize mindist=d
- for each p in Strip in sorted order
- compute its distance to the 5 points that come after it in sorted order
- if any of these is smaller than mindist, update mindist

- return mindist

Analysis: $T(n)=2 T(n / 2)+O(n \lg n)=>O\left(n \lg ^{2} n\right)$

Divide-and-conquer for closest pair

- Avoiding the sort

Divide-and-conquer for closest pair

- Describe in full detail how to avoid sorting at every level, and give the detailed pseudocode. Include an explanation for how to find the vertical line that splits P in half.

