Finding closest pair

Computational Geometry [csci 3250] Laura Toma Bowdoin College

p ₀	p ₁	p ₂	þ3	p4	p 5	
----------------	----------------	----------------	----	----	------------	--

$\rho_0 \rho_1 \rho_2 \rho_3 \rho_4 \rho_5 \dots$	p ₀	p1	p ₂	p ₃	p4	p 5	
---	----------------	----	----------------	----------------	----	------------	--

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_i , p_j
 - $d = distance (p_i, p_j)$
 - if (d< mindist): mindist=d

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_i , p_j
 - d = distance (p_i, p_j)
 - if (d< mindist): mindist=d

- Analysis:
 - O(n²) pairs ==> O(n²) time

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_i , p_j
 - d = distance (p_i, p_j)
 - if (d< mindist): mindist=d

- Analysis:
 - O(n²) pairs ==> O(n²) time

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_i , p_j
 - d = distance (p_i, p_j)
 - if (d< mindist): mindist=d

- Analysis:
 - O(n²) pairs ==> O(n²) time

Hint: divide-and-conquer

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else

//divide input A into two halves, A1 and A2

- A1 = first half of A
- A2 = second half of A

//sort recursively each half

- sorted_first_half = mergesort(array A1)
- sorted_second_half = mergesort(array A2)

//merge

- result = merge_sorted_arrays(sorted_first_half, sorted_second_half)
- return result

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else

//divide input A into two halves, A1 and A2

- A1 = first half of A
- A2 = second half of A

//sort recursively each half

- sorted_first_half = mergesort(array A1)
- sorted_second_half = mergesort(array A2)

//merge

- result = merge_sorted_arrays(sorted_first_half, sorted_second_half)
- return result

Analysis: $T(n) = 2T(n/2) + O(n) => O(n \lg n)$

In general

DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

```
result1 = DC(P1)
```

```
result2 = DC(P2)
```

//merge

do_something_to_figure_out_result_for_P

return result

Analysis: T(n) = 2T(n/2) + O(merge phase)

In general

Analysis: T(n) = 2T(n/2) + O(merge phase)

- if merge phase is O(n): $T(n) = 2T(n/2) + O(n) = > O(n \lg n)$
- if merge phase is $O(n \lg n)$: $T(n) = 2T(n/2) + O(n \lg n) => O(n \lg^2 n)$

• find vertical line that splits P in half

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1

How can you find closest pair in P?

YES. The closest pair is either:

- both points are in P1, and then it is found by the recursive call on P1
- both points are in P2, and then it is found by the recursive call on P2
- one point is in P1 and one in P2, and then it is found in the merge phase, because the merge phase consider all such pairs

• $T(n) = 2T(n/2) + O(n^2) =>$ solves to $O(n^2)$

Do we need to examine all pairs (p,q), with p in P_1 , q in P_2 ?

Do we need to examine all pairs (p,q), with p in P_1 , q in P_2 ?

Can (p,q) be the closest pair?

Why not? Where do p,q need to lie in order to be the closest pair?

Notation: $d = min \{d_1, d_2\}$

In order for dist(p,q) to be smaller than d, it must be that both the horizontal and the vertical distance between p and q must be smaller than d.

Claim: In order to be candidates for closest pair, points p, q must lie in the d-by-d strip centered at the median.

Fill in the details of the new algorithm's merge phase and analyze it.

• Show an example where the strip may contain Omega(n) points.

• What does this imply for the running time?

- Ok, so this is not yet enough
- But ... we also know that the vertical distance between p and q cannot be greater than d.

• Consider a point p in the stripe. How many points below it, at most, could be candidates for the closest pair (p,q)?

• Consider a point p in the stripe. How many points below it, at most, could be candidates for the closest pair (p,q)?

Claim:

A point p needs to check at most 5 points following p in y-order.

- Put all these together and write down the algorithm.
- Analyze the running time.

closestPair(P)

//divide

- find vertical line that splits P in half
- let P_1 , P_2 = set of points to the left/right of line
- call closestPair(P1); let d_1 be the returned closest distance
- call closestPair(P₂); let d₂ be the returned closest distance
 //merge
- let $d = \min\{d_1, d_2\}$
- Strip= empty
- for all p in $P_{1:}$ if $x_p > x_vertical d$: add p to Strip
- for all p in $P_{2:}$ if $x_p < x_vertical + d: add p to Strip$
- sort Strip by y-coord
- initialize mindist=d
- for each p in Strip in sorted order
 - compute its distance to the 5 points that come after it in sorted order
 - if any of these is smaller than mindist, update mindist

return mindist

closestPair(P)

//divide

- find vertical line that splits P in half
- let P_1 , P_2 = set of points to the left/right of line
- call closestPair(P1); let d_1 be the returned closest distance
- call closestPair(P₂); let d_2 be the returned closest distance //merge
- let $d = min\{d_1, d_2\}$
- Strip= empty
- for all p in $P_{1:}$ if $x_p > x_vertical d$: add p to Strip
- for all p in $P_{2:}$ if $x_p < x_vertical + d: add p to Strip$
- sort Strip by y-coord
- initialize mindist=d
- for each p in Strip in sorted order
 - compute its distance to the 5 points that come after it in sorted order
 - if any of these is smaller than mindist, update mindist

return mindist

Analysis: ?

closestPair(P)

//divide

- find vertical line that splits P in half
- let P_1 , P_2 = set of points to the left/right of line
- call closestPair(P1); let d_1 be the returned closest distance
- call closestPair(P₂); let d_2 be the returned closest distance //merge
- let $d = \min\{d_1, d_2\}$
- Strip= empty
- for all p in $P_{1:}$ if $x_p > x_vertical d$: add p to Strip
- for all p in $P_{2:}$ if $x_p < x_vertical + d: add p to Strip$
- sort Strip by y-coord
- initialize mindist=d
- for each p in Strip in sorted order
 - compute its distance to the 5 points that come after it in sorted order
 - if any of these is smaller than mindist, update mindist
- return mindist

• Avoiding the sort

• Describe in full detail how to avoid sorting at every level, and give the detailed pseudocode. Include an explanation for how to find the vertical line that splits P in half.