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Given an array of points in 2D, find the closest pair.
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Given an array of points in 2D, find the closest pair.



Brute force:   
• mindist = VERY_LARGE_VALUE



• for all distinct pairs of points pi, pj



• d = distance (pi, pj)



• if (d< mindist): mindist=d
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Given an array of points in 2D, find the closest pair.

Can we do better 
than O(n2)?



Brute force:   
• mindist = VERY_LARGE_VALUE



• for all distinct pairs of points pi, pj



• d = distance (pi, pj)



• if (d< mindist): mindist=d

• Analysis:  
• O(n2) pairs  ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better 
than O(n2)?

Hint: divide-and-conquer



Divide-and-conquer

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it



• else 



//divide input A into two halves, A1 and A2



• A1 = first half of A



• A2 = second half of A



//sort recursively each half 



• sorted_first_half = mergesort(array A1) 



• sorted_second_half = mergesort(array A2) 



//merge 



• result = merge_sorted_arrays(sorted_first_half, sorted_second_half) 



• return result



Divide-and-conquer

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it



• else 



//divide input A into two halves, A1 and A2 



• A1 = first half of A



• A2 = second half of A



//sort recursively each half 



• sorted_first_half = mergesort(array A1) 



• sorted_second_half = mergesort(array A2) 



//merge 



• result = merge_sorted_arrays(sorted_first_half, sorted_second_half) 



• return result

Analysis: T(n) = 2T(n/2) + O(n)  => O( n lg n)



In general

DC(input P)

if P is small, solve and return 



else 



//divide



divide input P into two halves, P1 and P2



//recurse 



result1 = DC(P1) 



result2 = DC(P2) 



//merge 



do_something_to_figure_out_result_for_P  



 
return result

Analysis: T(n) = 2T(n/2) + O(merge phase) 



DC(input P)

if P is small, solve and return 



else 



//divide



divide input P into two halves, P1 and P2



//recurse 



result1 = DC(P1) 



result2 = DC(P2) 



//merge 



do_something_to_figure_out_result_for_P  



 
return result

In general

• if merge phase is O(n):        T(n) = 2T(n/2) + O(n)         => O( n lg n) 

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase) 
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Divide-and-conquer for closest pair
• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• recursively find closest pair in P1


• recursively find closest pair in P2
• …… //NOW WHAT?

How can you find closest pair in P? 



Divide-and-conquer for closest pair
• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• d1 = find closest pair in P1


• d2 = find closest pair in P2


• for each p in P1, for each q in P2



• compute distance d(p,q) 


• mindist = min{d1, d2, d(p,q)}

1. Is this correct?  
2.   Running time?



Divide-and-conquer for closest pair
• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• d1 = find closest pair in P1


• d2 = find closest pair in P2


• for each p in P1, for each q in P2



• compute distance d(p,q) 


• mindist = min{d1, d2, d(p,q)}

Is this correct?  
YES. The closest pair is either:  
• both points are in P1, and then it is found by the recursive call on P1 
• both points are in P2, and then it is found by the recursive call on P2 
• one point is in P1 and one in P2, and then it is found in the merge phase, because the merge phase consider 

all such pairs



Divide-and-conquer for closest pair
• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• d1 = find closest pair in P1


• d2 = find closest pair in P2


• for each p in P1, for each q in P2



• compute distance d(p,q) 


• mindist = min{d1, d2, d(p,q)}

Running time? 
• T(n) = 2T(n/2) + O(n2) => solves to O(n2)



Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?  

p
q

Can (p,q) be the closest pair? 



Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?  

p
q

Why not? Where do p,q need to lie in order to be the closest pair? 

d1

d2

Can (p,q) be the closest pair? 



Notation: d = min {d1, d2}

p
q

d2

d1

In order for dist(p,q) to be smaller than d, it must be that both the horizontal 
and the vertical distance between p and q must be smaller than d.  



Proof:  

p
q

d2

d1

Claim:  In order to be candidates for closest pair, points  p, q must lie 
in the d-by-d strip centered at the median.



• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• recursively find closest pair in P1


• recursively find closest pair in P2


• …..

Refining the merge

Fill in the details of the new algorithm’s merge phase and analyze it. 

p
q

d2

d1



Refining the merge

p
q

d2

d1

• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• recursively find closest pair in P1


• recursively find closest pair in P2


• traverse P1 and select all points P1’ in the strip


• traverse P2 and select all points P2’ in the strip


• for each p in P1’



• for each point q in P2’


• compute distance d(p,q) 


• mindist = min{d1, d2, d(p,q)}



• Show an example where the strip may contain Omega(n) points.

Refining the merge

p
q

d2

d1

• What does this imply for the running time?



• Ok, so this is not yet enough 
• But … we also know that the vertical distance between p and q cannot be 

greater than d.

Refining the merge

p q
d d

d d



• Consider a point p in the stripe. How many points below it, at most, could be 
candidates for the closest pair (p,q)?  

  

Refining the merge

d d



• Consider a point p in the stripe. How many points below it, at most, could be 
candidates for the closest pair (p,q)?  

  

Refining the merge

p q
d d

d d

any pair of points in 
the left side must be 
at least d away

any pair of points in 
the right side must 
be at least d away

p,q must lie in 2d-by-d rectangle



Claim:  
A point p needs to check at most 5 points following p in y-order. 

Refining the merge

d d

p

Note: Assume no duplicate points.



• Put all these together and write down the algorithm. 
• Analyze the running time. 

Refining the merge



Refining the merge
closestPair(P)

//divide


• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• call closestPair(P1);  let d1 be the returned closest distance


• call closestPair(P2);  let d2 be the returned closest distance


//merge


• let d = min{d1, d2}


• Strip= empty 


• for all p in  P1: if xp > x_vertical - d: add p to Strip


• for all p in  P2: if xp < x_vertical + d: add p to Strip


• sort Strip by y-coord


• initialize mindist=d


• for each p in Strip in sorted order



• compute its distance to the 5 points that come after it in 
sorted order



• if any of these is smaller than mindist, update mindist 



• return mindist

d d



Refining the merge
closestPair(P)

//divide


• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• call closestPair(P1);  let d1 be the returned closest distance


• call closestPair(P2);  let d2 be the returned closest distance


//merge


• let d = min{d1, d2)


• Strip= empty 


• for all p in  P1: if xp > x_vertical - d: add p to Strip


• for all p in  P2: if xp < x_vertical + d: add p to Strip


• sort Strip by y-coord


• initialize mindist=d


• for each p in Strip in sorted order



• compute its distance to the 5 points that come after it in 
sorted order



• if any of these is smaller than mindist, update mindist 



• return mindist

d d

Analysis: ? 



Refining the merge
closestPair(P)

//divide


• find vertical line that splits P in half


• let P1, P2 = set of points to the left/right of line


• call closestPair(P1);  let d1 be the returned closest distance


• call closestPair(P2);  let d2 be the returned closest distance


//merge


• let d = min{d1, d2)


• Strip= empty 


• for all p in  P1: if xp > x_vertical - d: add p to Strip


• for all p in  P2: if xp < x_vertical + d: add p to Strip


• sort Strip by y-coord


• initialize mindist=d


• for each p in Strip in sorted order



• compute its distance to the 5 points that come after it in 
sorted order



• if any of these is smaller than mindist, update mindist 



• return mindist

d d

Analysis:  T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)



• Avoiding the sort  

Divide-and-conquer for closest pair



• Describe in full detail how to avoid sorting at every level, and give the 
detailed pseudocode.  Include an explanation for how to find the vertical line 
that splits P in half. 

Divide-and-conquer for closest pair


