

1

2

The Art Gallery Problem

Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.
What does the guard see?

We say that two points a, b are visible if segment ab stays inside P (touching boundary is ok).

The Art Gallery Problem
magine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.

3

The Art Gallery Problem
Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.
What does the guard see?

6

7

8

The Art Gallery Problem(s)

Questions:

1. Given a polygon P of size n, what is the smallest number of guards (and their 1. Given a polygon P of siz
locations) to cover P?

9

12

13

14

17

Klee's problem
Notation

- Let P_{n} : polygon of n vertices
- Let $g(P)=$ the smallest number of guards to cover P
- Let $G(n)=\max \left\{g\left(P_{n}\right) \mid \operatorname{lll} P_{n}\right\}$.
- $G(n)$ is the smallest number that always works for any n-gon. It is sometimes necessary and always sufficient to guard a polygon of n vertices
G(n) is nocossary. hnere exisis a n hat requires $G(n)$ guards
- $G(n)$ is sufficient: any P_{n} can be guarded with $G(n)$ guards
- Klee's problem: find $\mathrm{G}(\mathrm{n})$

15

Klee's Problem
n=4

Any quadrilateral needs at least one guard. Any quacriateral needs at leat.
One guard is always sufticient. $G(4)=1$

19

20

21

Klee's Problem

$\mathrm{G}(\mathrm{n})=$?
Come up with a P_{n} that requires as many guards as possible.

$G(6)=2$
Klee's Problem
$G(n)=$?
Come up with a P_{n} that requires as many guards as possible.

25

Klee's Problem
$\lfloor\mathrm{n} / 3\rfloor$ necessary

26

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated.
2. A triangulated simple polygon can be 3 -colored.
3. Observe that placing the guards at all the vertices assigned to one color

Observe that placing the guards at a
guarantees the polygon is covered.
4. There must exist a color that's used at most n / s times. Pick that color and place guards at the vertices of that color.

Proofs from THE BOOK

Content last

Klee's Problem
It was shown that $\lfloor n / 3\rfloor$ is also sufficient. That is.
Any P_{n} can be guarded with at most \lfloor l $n / 3\rfloor$ guards.

- (Complex) proof by induction
- Subsequently, simple and beautiful proof due to Steve Fisk, who was Bowdoin Math faculty
- Proof in The Book.

Fisk's proof of sufficiency
Claim: Any simple polygon can be triangulated.

30

31

32

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

33

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

36

37

38

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored

- •

39

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.
3. Any triangulation of a simple polygon can be 3 -colored.

41

42

43

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

- - -

44

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

47

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

- •

45

Fisk's proof of sufficiency

1. Any simple polygon can be triangulated
2. Any triangulation of a simple polygon can be 3 -colored.

49

50

Fisk's proof of sufficiency

- Placing guards at vertices of one color covers P.

51

Fisk's proof of sufficiency

- Placing guards at vertices of one color covers P.
- Pick least frequent color! At most $n / 3$ vertices of that color.

53

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3 -colored
3. Observe that placing the guards at all the vertices assigned to one
color guarantees the polygon is covered
4. There must exist a color that's used at most $n / 3$ times. Pick that color

There must exist a color that's used at most no
and place guards at the vertices of that color.

Claim: The set of red vertices covers the polygon. The set of blue vertices covers the polygon. The set of green vertices covers the polygon.

There are n vertices colored with one of 3 colors.

Claim: There must exist a color that's used at most $n / 3$ times. Proof:

Polygon triangulation
Theorem: Any simple polygon has at least one convex vertex Proof:

Polygon triangulation
Theorem: Any simple polygon with $n>3$ vertices contains (at least) a diagonal. Proof:

