Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Polygon Triangulation

Polygon Triangulation

The problem: Triangulate a given polygon.
(output a set of diagonals that partition the polygon into triangles).

Polygon Triangulation

The problem: Triangulate a given polygon.
(output a set of diagonals that partition the polygon into triangles).

Known Results

- Given a simple polygon P, a diagonal is a segment between 2 non-adjacent vertices that lies entirely within the interior of the polygon.
- Theorem: Any simple polygon with $n>3$ vertices contains (at least) a diagonal.
- Theorem: Any polygon can be triangulated.
- A set of 3 consecutive vertices v_{i-1}, v_{i}, v_{i+1} defines an ear if $v_{i-1} v_{i+1}$ is a diagonal.
- Theorem: Any polygon has at least two ears.

First steps

- Triangulation by identifying ears
- Idea: Find an ear, output the diagonal, delete the ear tip, repeat.
- Analysis:
- checking whether a vertex is ear tip or not: $O(n)$
- finding an ear $O(n)$
- overall O(n³)
- Can be improved to $O\left(n^{2}\right)$
- Idea: When you remove a ear tip from the polygon, only the adjacent vertices might change their ear status

Towards an O(n Ig n) Polygon Triangulation Algorithm

Monotone chains

A polygonal chain is \mathbf{x}-monotone if any line perpendicular to x-axis intersects it in one point (one connected component).

Monotone chains

A polygonal chain is \mathbf{x}-monotone if any line perpendicular to \mathbf{x}-axis intersects it in one point (one connected component).

Monotone chains

Not x-monotone

Monotone chains

- Let u and v be the points on the chain with $\min / \max x$-coordinate.
- The vertices on the boundary of an x-monotone chain, going from u to v, are in x-order.

Monotone chains

x-monotone

As you travel along this chain, your x coordinate is staying the same or increasing

Monotone chains

A polygonal chain is \mathbf{y}-monotone if any line perpendicular to \mathbf{y}-axis intersects it in one point (one connected component).

Monotone chains

A polygonal chain is \mathbf{L}-monotone if any line perpendicular to line \mathbf{L} intersects it in one point (one connected component).

Monotone polygons

A polygon is \mathbf{x}-monotone if its boundary can be split into two x-monotone chains.

Monotone polygons

A polygon is \mathbf{x}-monotone if its boundary can be split into two x-monotone chains.

Monotone polygons

x-monotone
y-monotone

Monotone Mountains

A polygon is an \mathbf{x}-monotone mountain if it is monotone and one of the two chains is a single segment.

Monotone Mountains

A polygon is an \mathbf{x}-monotone mountain if it is monotone and one of the two chains is a single segment.

Monotone mountains are easy to triangulate!

Class work: come up with an algorithm and analyze it.

Monotone mountains are easy to triangulate!

Analysis: $O(n)$ time

Triangulating Monotone Polygons

Similar idea, O(n) time

Towards an O(n Ig n) Polygon Triangulation Algorithm

How can we partition a polygon in monotone pieces?

Intuition

not x-monotone

What makes a polygon not monotone?

Intuition

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after are both smaller or both larger than v (in terms of x-coords).

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after are both smaller or both larger than v (in terms of x-coords).

not x-monotone

- Theorem: If a polygon has no cusps, then it's monotone.
- Proof: maybe later..

We'll get rid of cusps using a trapezoidalization of P.

Trapezoid partitions

Compute a trapezoidalization (trapezoid partition) of the polygon.

Trapezoid partitions

Compute a trapezoidalization (trapezoid partition) of the polygon.

- if polygon is above vertex, shoot vertical ray up until reaches boundary
- if polygon is below vertex, shoot down
- if polygon is above and below vertex, shoot both up and down

Trapezoid partitions

Compute a trapezoidalization (trapezoid partition) of the polygon.

- if polygon is above vertex, shoot vertical ray up until reaches boundary
- if polygon is below vertex, shoot down
- if polygon is above and below vertex, shoot both up and down

Trapezoid partitions

- Each polygon in the partition is a trapezoid:
- It has one or two threads as sides.
- If it has two, then they must both hit the same edge above, and the same edge below.
- At most one thread through each vertex $=>O(n)$ threads $=>O(n)$ trapezoids

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- Each trapezoid has precisely two vertices of the polygon, one on the left and one on the right. They can be on the top, bottom or middle of the trapezoid.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

Trapezoid partitions

- In each trapezoid: if its two vertices are not on the same edge, they define a diagonal.

We'll use the trapezoid partition of P to get rid of cusps and split it into monotone polygons

Removing cusps

1. Compute a trapezoid partition of P

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

Removing cusps

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. For each cusp vertex, add diagonal in trapezoid before/after the cusp

This creates a partition of P.
The resulting polygons have no cusps and thus are monotone (by theorem).

Removing cusps

- Another example

Removing cusps

- Another example

1. Compute a trapezoid partition of P

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices

Removing cusps

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. Add obvious diagonal before/after each cusp

Removing cusps

This partitions the polygon into monotone pieces.

Removing cusps

This partitions the polygon into monotone pieces.

Removing cusps

This partitions the polygon into monotone pieces.

Partition P into monotone polygons

1. Compute a trapezoid partition of P
2. Identify cusp vertices
3. Add obvious diagonal before/after each cusp

An O(n Ig n) Polygon Triangulation Algorithm

An O(n Ig n) Polygon Triangulation Algorithm

Given a trapezoid partition of P , we can triangulate it in $\mathrm{O}(\mathrm{n})$ time.

An O(n Ig n) Polygon Triangulation Algorithm

Given a trapezoid partition of P, we can triangulate it in $O(n)$ time.
Actually there's even a simpler way to do this.

An O(n Ig n) Polygon Triangulation Algorithm

Generating monotone mountains

Generating monotone mountains

1. Compute a trapezoid partition of P

Generating monotone mountains

1. Compute a trapezoid partition of P

Generating monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

Generating monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

Generating monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

The diagonals partition the polygon into monotone mountains.

Generating monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

The diagonals partition the polygon into monotone mountains.

Generating monotone mountains

1. Compute a trapezoid partition of P
2. Output all diagonals.

The diagonals partition the polygon into monotone mountains.

Generating monotone mountains

Claim: The diagonals partition the polygon into monotone mountains.

Proof:

- Each polygon is monotone
- One of the chains must be a segment (because if it had another point, that point would generate a diagonal)

An O(n Ig n) Polygon Triangulation Algorithm

Given a trapezoid partition of P, we can triangulate it in $O(n)$ time.

An O(n Ig n) Polygon Triangulation Algorithm

Given a polygon P, how do we compute a trapezoid partition?

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \operatorname{Ig} \mathrm{n})$

- Plane sweep

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

- Plane sweep
- Events: polygon vertices
- Status structure: edges that intersect current sweep line, in y-order
- Events:

How do you determine the trapezoids?

Computing the trapezoid partition in $\mathrm{O}(\mathrm{n} \operatorname{Ig} \mathrm{n})$

- Algorithm

History of Polygon Triangulation

- Early algorithms: $O\left(n^{4}\right), O\left(n^{3}\right), O\left(n^{2}\right)$
- First pseudo-linear algorithm: O(n lg n)
- ... Many papers with improved bounds
- Until finally Bernard Chazelle (Princeton) gave an O(n) algorithm in 1991
- https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf
- Ridiculously complicated!
- O (1) people actually understand it (and I'm not one of them)
- There is a randomized algorithm that runs in $O(n)$ expected

