Computational Geometry
[csci 3250]

Laura Toma

Bowdoin College

Line segment intersection

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

* |nput: segments

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

* |nput: segments

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

* |nput : polygons

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

* |nput : polygons

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

* |Input : planar maps

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

Deal Senth |Randgal CoveyColmgyworth
Armphong

Parmet| Castro Swinher Biscoe| Mol Ovidred,

* |nput : planar maps |

Badey| Lamd | Male Floyd |Motiey | Cottle
Foard

i} + - e

Gochrantocieylutbock Cronty Dickens| ng | Know
. \ +

Kot Rorewalrusind

4 - -

4

Yoskum Terry

B

T

b | Garga

Ganes Dawson Sorden Scurry | Fisher | Jones

+ = + . -

- - -

lm‘ Winkler| Ecior Mdla

-

nd Seecting Come ——

3

L3

W Green
on

Crare T

N

Coninve:

Schiecher Menard

s

¢ Sagmon Kmbie
- “"ﬂl 's A

y
Boylor Archer

$re
Shahefond

Andrews | Nadtia Mowardiiached Nolin | Taylor Callehany

Coloman

MoCulioch

Counties of Texas

m .
S itarge

1 . Pl N

¥

Wihes 1l ./~
1 Oy

LA

.
Lamar Bod Rived -
Bowe

.
V|

W“‘m Grapon farnn
L__— O
r ™
" B Whe |Dertos | Colin st | Hoph s (5 Cons
Duechepeion TNk ""—w 1
- iy, [TV p M.
Packer |Tareast | Culas \ ol phag] S VA
reloPige | A Saufrnatvun Zandl g | Marmison
| Hood sonraan) O\ Senh

-y

Ay L

.

Castiand | - B
P L L

- --""m-nu?__,‘;\) Y '
Comanchie' A S Magerson RO Shely

: N M ey
D g
:)vomlm,

A ™~ . !
Asgeind %‘b“'

(1Y * !
2 sk | Fanols

Leon

g g (tammasppruteiy

b Coryet

el et
sy's.“’hum !

o
b g A
g > "
- A

“ Fats

Applications

Segment data in GIS: river networks, road networks, railways, counties, etc

o) A Meart Collins Sterling
5 g y m l Gftd w
1han '
ng I Boglder

. o -
‘.‘J Jenver ‘/
! * Limon__{70) - x o ,
,- L ;

0O
La Junty

o Yalsenburg -~
@\\’ ; l)umngo . ‘ x =
B { PogosaSpriag Location
\\@ - i

E<HwVTrXINnO

Applications
river network, road networks, counties, etc

(A
\
\
! III \
J |I' '._ . 7
\ \ \ .
\ \ /
, \ \ \
I| \ .f’\‘:\
\ \ ’
\ \ A
\ \, . \
\ \ \
\ \ \
\ \,
II \
|}

"
p—— 1
— 1
1
\
|
|
1

Segment data in GIS:

v p";ﬂ’"n V% "", '
/ l
l" l' |

Applications

Segment data in GIS: river network, road networks, counties, etc

I W
ll 1
I
I .
- 1
| T
.§1
)5
7 IR - b 1
. LTI T T TS C 1
—2) CTIHTT I |
X { s u
. 11 YT
|| E e e e
 r }[I””E:*
N | HEEa R :
|) :%
] - RN
ST L]+ - -
7 C1 inSumaniy) -
1
/; [-
] |
LAt
| 3
L1
nl l] T1171
_ Tl -1 Y
|

Applications

Map overlay in GIS

Applications

Map overlay in GIS

Overlay
layer

attributes for layer A

attributes for layer B

\

overlay attributes, combined
attributes for layers A & B

from: www.geo.hunter.cuny.edu/aierulli/qis2/lectures/L ecture?/fig9-30_raster_overlay.qif

http://c

=

P o o Counties of Texas

Applications e

{MW Hale nmmm\—
Fosrd
Tng | Knom

O

%

. o d
Map overlay in GIS ==

o

Tonel s |
7 "g'j ‘ T"@h[Eeter :uaudm‘ |
. N\ e Cuiberson |' L Q‘f‘ Crare
\\.

@ rtonstae Higways
O us rghwan

—
0 100 XM 100 Miles

from: www.qgeo.hunter.cuny.edu/aierulli/qis2/lectures/L ecture?/fig9-30_raster_overlay.qif

http://c

Applications

Motion planning and collision detection in robotics

Applications

Rendering in graphics

* involves intersections with objects

-
-~
-
-
-
-~
.
.~
.~

viewing
frustum . . '
clip plane Viewpoint

.‘-‘
Seo
e
S
e

- ModelingHero.com [Beginner - Arnold Face Model

Applications

Collision detection

Line segment intersection

Given a set of line segments in 2D, find (report) all their pairwise intersections.

* Notation
e n:size of the input (number of segments)

e k: size of output (number of intersections)

o Exercise 1:
o Give upper and lower bounds for k.
 Draw examples that achieve these bounds.

e EXxercise 2:

« Give a straightforward algorithm that computes all intersections and analyze its
running time. Give scenarios when this algorithm is efficient/inefficient.

« What is your intuition of an upper bound for this problem? (that is, how fast would
you hope to be able to solve it?)

Line segment intersection

First we are going to look at a special case...

Orthogonal line segment intersection:

* Given a set of n orthogonal line segments, find all their pairwise intersections

Orthogonal line segment intersection:

* Given a set of n orthogonal line segments, find all their pairwise intersections

Orthogonal line segment intersection:

* Given a set of n orthogonal line segments, find all their pairwise intersections

 EXxercises
 (Come up with a straightforward algorithm and analyze its time
 (Can you come up with an improved algorithm?
 Hint: use a BBST

Binary Search Trees review

Binary Search Trees (BST)

Operations

Insert
delete

search

successor, predecessor

)

traversals (in order, .

min, max

Balanced Binary Search Trees (BBST)

e Binary search trees + invariants that constrain the tree to be balanced (and
thus have logarithmic height)

 These invariants have to be maintained when inserting and deleting (so we
can think of the tree as self-balancing)

« BBST variants
* red-black trees
 AVL trees
 B-trees

e (a,b)trees

Example: Red-Black trees

 Binary search trees such that
e Each node is Red or Black
e The children of a Red node must be Black

 The number of Black nodes on any path from the root to a node that does
not have two children must be the same

uﬁ! ﬂ!
Note:

e easier to conceptualize the tree as containing explicit NULL leaves, all Black
« the number of Black nodes on any root-to-leaf path must be the same

Example: Red-Black trees

e Theorem:

A Red-Black tree of n nodes has height Theta(Ig n).

Example: Red-Black trees

e Theorem:

e After an insertion or a deletion, the RB tree invariants can be maintained
in additional O(Ig n) time. This is done by performing rotations and
recoloring on the path from the inserted/deleted node up to the root.

o0

Binary Search Trees

Operations

Insert

delete

search

successor, predecessor
traversals (in order, ..)
min, max

range search (1D)

"
& & & W
D @ & @& @

1D Range Searching

o Given a set of values P = {x1, X2, X3, ... Xn }
o Want to answer Range Search queries:

rangeSearch(a,b): return all elements in P in interval (a,b)

\SZ

1D Range Searching

o Given a set of values P = {x1, X2, X3, ... Xn }
o Want to answer Range Search queries:

rangeSearch(a,b): return all elements in P in interval (a,b)

\SZ

1D Range Searching

o Given a set of values P = {x1, X2, X3, ... Xn }
o Want to answer Range Search queries:

rangeSearch(a,b): return all elements in P in interval (a,b)

<
 |If Pis static: a b

1D Range Searching

o Given a set of values P = {x1, X2, X3, ... Xn }
o Want to answer Range Search queries:

rangeSearch(a,b): return all elements in P in interval (a,b)

<
 |If Pis static: a b

e sort and binary search

1D Range Searching

o Given a set of values P = {x1, X2, X3, ... Xn }
o Want to answer Range Search queries:

rangeSearch(a,b): return all elements in P in interval (a,b)

¢
o |f Pis static: a b
e sort and binary search E E
e |f Pis dynamic:
e use BBST

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

43

@ & @ o

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

e

1 54
@ @ @ W
[©

DE &

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

NIL NIL

10 16

1D range searching with Binary Search Trees

« Range search (a,b): return all elements in this interval

1D range searching with Binary Search Trees

« Range search (a,b): return all elements in this interval

« Can be answered in O(Ig n+k), where k = O(n) is the size of output

(L

2

{
W

Orthogonal line segment intersection using BST

Orthogonal line segment intersection using BST

* Let X be the set of x-coordinates of all segments //our “events”
e horizontal segment: x_start, x_end

e vertical segment: x

Orthogonal line segment intersection using BST

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

‘ line sweep

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

‘ line sweep

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

‘ line sweep

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

i ‘ ine sweep

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

—>
:
1
1

— ‘ ine sweep

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

1

|

line sweep

* Let X be the set of x-coordinates of all segments //our “events”

e Sort X and traverse the events in order

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

 if X is start of horizontal segment (x, X', y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
e if X is end of horizontal segment (x, X, y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if X corresponds to a vertical segment (y, y',X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

 if X is start of horizontal segment (x, X', y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
e if X is end of horizontal segment (x, X, y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if X corresponds to a vertical segment (y, y',X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
e if X is end of horizontal segment (x, X, y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

:—>
’

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
e if X is end of horizontal segment (x, X, y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

|

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

1

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

:—>
#

e et X be the set of x-coordinates of all segments
/Jour events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

e if x is start of horizontal segment (x, X, y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
 if X is end of horizontal segment (x, X', y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if x corresponds to a vertical segment (y, y’,X):

/[all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Orthogonal line segment intersection using BST

Exercises:

* Pick another example and
simulate the algorithm

e How do you implement the AS?

e Analysis?

e et X be the set of x-coordinates of all segments
/four events

 Initialize AS = {}

e Sort X and traverse the events in order; let x be
the next event in X

 if X is start of horizontal segment (x, X', y):
//segment becomes active
* insert segment (x,x’,y) with key=y in AS
e if X is end of horizontal segment (x, X, y):
//segment stops being active
* delete segment (x,x’,y) with key=y from AS
e if X corresponds to a vertical segment (y, y',X):

//all active segments start before x and end
after x. We need those whose y isin [y,y’]

e range_search (y,y’) and report

Line sweep

 Frequently used technigue

e |ine can be horizontal or vertical or radial or

*

.
*
.
.
.
.
.
.
.
.
.
3
.
.
*
.
.
*
*
*
.
.
.
.
.
.
.
*
.
.
.
3
.
.
*
*
.
*
*
*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
‘O
*

Line sweep

 Frequently used technigue
e Line can be horizontal or vertical or radial or
 Traverse events in order and maintain an Active Structure (AS)

 AS maintains objects that are “active” (started but not ended) in other
words they are intersected by the present sweep line

e at certain events, insert in AS
o at certain events, delete from AS

e atother events, query AS

