Computational Geometry

 csci3250Laura Toma
Bowdoin College

Motion Planning

Input:

- a robot R and a set of obstacles $S=\left\{O_{1}, O_{2}, \ldots\right\}$
- start position $\mathrm{p}_{\text {start }}$
- end position pend

Find a path from start to end (that optimizes some objective function).

- Ideally we would like a planner that's complete and optimal.
- A planner is complete:
- it always finds a path when a path exists
- A planner is optimal:
- it finds an optimal path

Applications

Motion Planning

Combinatorial motion planning

- Point robot in 2D
- Roadmaps via trapezoid decomposition
- Shortest paths: Visibility graph
- Polygon robot in 2D
- Translation only
- Handling rotation

Approximate motion planning

Point robot in 2D

- General idea
- Compute a trapezoid decomposition of free space
- Build a graph (roadmap) of free space
- Search graph to find path \qquad Reduce motion planning to graph search

Polygonal robot in 2D

- Robot R(x,y)
- The C-obstacle corresponding to obstacle O represents the set of all placements that cause intersection with O .

Polygonal robot in 2D

- Robot R(x,y)
- The C-obstacle corresponding to obstacle O represents the set of all placements that cause intersection with O .

Exercise

Show the corresponding C-obstacles for a disc robot.

Exercise

Show the corresponding C-obstacle.

Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space

//now the problem is reduced to point

//robot moving in free C-space

- Compute a trapezoidal map of free Cspace
- Compute a roadmap

How do we compute C-obstacles?

Minkowski sum

- Let A, B two sets of points in the plane
- Define $A_{C} B=\{x+y \mid x$ in A, y in $B\} \longleftarrow$ Minkowski sum

- Interpretation: consider set A to be centered at the origin. Then $A+B$ represents many copies of A, translated by y, for all y in B; i.e. place acopy of A centered at each point of B.

A translated by v

$\mathrm{B} \oplus \mathrm{A}$

Minkowski sum

- $A \oplus B$: Slide A so that the center of A traces the edges of B

C-obstacles as Minkowski sums

- Consider a robot R with the center in the lower left corner

C-obstacles as Minkowski sums

- Consider a robot R with the center in the lower left corner

$B \oplus R$ is not quite the C-obstacle of B

C-obstacles as Minkowski sums

-R: R reflected by origin

The C-obstacle of B is $B \oplus(-R(0,0))$.

Slide so that R touches the obstacle

Slide so that centerpoint of -R traces the edges of obstacle

How do we compute Minkowski sums?

Computing Minkowski sums

Computing Minkowski sums

CASE 1: Convex robot with convex polygon

Computing Minkowski sums

CASE 1: Convex robot with convex polygon
Observations:

Computing Minkowski sums

CASE 1: Convex robot with convex polygon
Observations:

- Each edge in R, O will cause an edge in R+O

Computing Minkowski sums

CASE 1: Convex robot with convex polygon
Observations:

- Each edge in R, O will cause an edge in R+O
- R+O has m+n edges unless there are parallel edges

Computing Minkowski sums

CASE 1: Convex robot with convex polygon
Observations:

- Each edge in R, O will cause an edge in R+O
- R+O has m+n edges unless there are parallel edges
- To compute: Place -R at all vertices of O and compute convex hull

Computing Minkowski sums

CASE 1: Convex robot with convex polygon
Observations:

- Each edge in R, O will cause an edge in R+O
- R+O has m+n edges unless there are parallel edges
- To compute: Place -R at all vertices of O and compute convex hull
- Possible to compute in $\mathrm{O}(\mathrm{m}+\mathrm{n})$ time by walking along the boundaries of R and O

Computing Minkowski sums

2D

- convex + convex polygons
- The Minkowski sum of two convex polygons with n, and m edges respectively, is a convex polygon with $n+m$ edges and can be computed in $\mathrm{O}(\mathrm{n}+\mathrm{m})$ time.
- convex + non-convex polygons
- triangulate them, and compute Minkowski sums for each pair of triangles, and take their union
- size of Minkowski sum: O(mn)
- non-convex + non-convex polygons:
- size of Minkowski sum: $O\left(n^{2} m^{2}\right)$

3D

- it gets worse . . .

Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space

//now the problem is reduced to point

//robot moving in free C-space

- Compute a trapezoidal map of free C-space
- Compute a roadmap

For a convex robot of $\mathbf{O (1)}$ size

- Free C-space can be computed in $\mathrm{O}\left(\mathrm{n} \lg \mathrm{g}^{2} \mathrm{n}\right)$ time.
==> With $\mathrm{O}\left(\mathrm{n} \lg ^{2} \mathrm{n}\right)$ time preprocessing, a collision-free path can be found for any start and end in $O(n)$ time.

Complete, non optimal.

Polygonal robot in 2D with rotations

- Physical space is 2D
- A placement is specifies by 3 parameters: $R(x, y$, theta $)==>C$-space is 3D.

Polygonal robot in 2D with rotations

- We'd like to extend the same approach:

Reduce to point robot moving among C-obstacles in C-space.

- Compute C-obstacles
- Compute free space as complement of union of C-obstacles
- Decompose free space into simple cells
- Construct a roadmap
- BFS on roadmap

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

A C-obstacle is a 3D shape.
Imagine moving a horizontal plane vertically through C-space.

Each cross-section of the C-obstacle is a Minkowski sum $O \oplus-R(0,0, \theta)$
=> twisted pillar

$R(0,0, \theta)$

Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for convex, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ for non-convex robot

Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for convex, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ for non-convex robot
- Extend same approach:

1. Compute C-obstacles and C-free
2. compute a decomposition of free space into simple cells
3. construct a roadmap
4. BFS on roadmap

Polygonal robot in 2D with rotations

- Difficult to construct a good cell decomposition for curved 3D space
- A simpler approach:
- For a fixed angle you got translational motion planning
- Discretize rotation angle and compute a finite number of slices, one for each angle
- Construct a trapezoidal decomposition for each slice
- Add edges between slices to allow robot to move up/down between slices (this correspond to rotational moves)
=> 3D graph

Heuristical/approximate motion planning

- Approximate cell decomposition
- grid
- quadtrees
- Potential field
- Roadmaps
- Incremental sampling
- Probabilistic roadmaps
- Hybrid

Issues:

huge C-space, local minima
performance guarantees? completeness? optimality?

Potential field methods

- Idea:
- Define a potential field
- Robot moves in the direction of steepest descent on potential function
- Ideally potential function has global minimum at the goal, has no local minima, and is very large around obstacles
- Algorithm outline:
- place a regular grid over C-space
- search over the grid with potential function as heuristic
- Con: can get stuck in local minima

