
Computational Geometry
csci3250

Laura Toma

Bowdoin College

Motion Planning

Input:
• a robot R and a set of obstacles S = {O1, O2,…}
• start position pstart
• end position pend

Find a path from start to end (that optimizes some objective function).

• Ideally we would like a planner that’s complete and optimal.
• A planner is complete:

• it always finds a path when a path exists
• A planner is optimal:

• it finds an optimal path

Applications

Motion Planning

Combinatorial motion planning
• Point robot in 2D

• Roadmaps via trapezoid decomposition
• Shortest paths: Visibility graph

• Polygon robot in 2D
• Translation only
• Handling rotation

Approximate motion planning

today

Point robot in 2D
• General idea

• Compute a trapezoid decomposition of free space
• Build a graph (roadmap) of free space
• Search graph to find path <---------- Reduce motion planning to graph search

Polygonal robot in 2D

• Robot R(x,y)
• The C-obstacle corresponding to obstacle O represents the set of all

placements that cause intersection with O.

O

C-obstacle corresponding to O

• Robot R(x,y)
• The C-obstacle corresponding to obstacle O represents the set of all

placements that cause intersection with O.

Polygonal robot in 2D

Exercise

r

robot

Show the corresponding C-obstacles for a disc robot.

Exercise

Show the corresponding C-obstacle.

robot

Polygonal robot translating in 2D

Algorithm

• For each obstacle O, compute the
corresponding C-obstacle

• Compute the union of C-obstacles
• Compute its complement. That’s the

free C-space

 //now the problem is reduced to point

 //robot moving in free C-space
• Compute a trapezoidal map of free C-

space
• Compute a roadmap

O

O

O

How fast can we do this?

How do we compute C-obstacles?

Minkowski sum
• Let A, B two sets of points in the plane
• Define A + B = { x + y | x in A, y in B} Minkowski sum

• Interpretation: consider set A to be centered at the origin. Then A + B
represents many copies of A, translated by y, for all y in B; i.e. place a copy of
A centered at each point of B.

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B + A

y

y

y

x, y vectorsvector sum

Minkowski sum

• A + B: Slide A so that the center of A traces the edges of B

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B + A

y

y

y

C-obstacles as Minkowski sums

BB
x

x+R

R translated by x

B

B + R

R R

R

R

R
RR

R

R
R

R

• Consider a robot R with the center in the lower left corner

C-obstacles as Minkowski sums

B + R is not quite the C-obstacle of B

• Consider a robot R with the center in the lower left corner

BB
x

x+R

R translated by x

B

B + R

R R

R

R

R
RR

R

R
R

R

BB
x

-R translated by x

B

B + -R
-R

R

-R: R reflected by origin

-R

-R

-R

-R
-R -R

-R
-R

-R
-R

-R-R

The C-obstacle of B is B + (- R(0,0)).

C-obstacles as Minkowski sums

O

C-obstacle corresponding to O

Slide so that R touches the obstacle Find O + (-R)

O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R traces
the edges of obstacle

How do we compute Minkowski sums?

C-obstacle corresponding to O

R

-R

Computing Minkowski sums

R
-R

CASE 1: Convex robot with convex polygon

Computing Minkowski sums

R
-R

CASE 1: Convex robot with convex polygon

Observations:

Computing Minkowski sums

R
-R

CASE 1: Convex robot with convex polygon

Observations:
• Each edge in R, O will cause an edge in R+O

Computing Minkowski sums

R
-R

CASE 1: Convex robot with convex polygon

Observations:
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges unless there are parallel edges

Computing Minkowski sums

R
-R

CASE 1: Convex robot with convex polygon

Observations:
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges unless there are parallel edges
• To compute: Place -R at all vertices of O and compute convex hull

Computing Minkowski sums

R
-R

CASE 1: Convex robot with convex polygon

Observations:
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges unless there are parallel edges
• To compute: Place -R at all vertices of O and compute convex hull
• Possible to compute in O(m+n) time by walking along the boundaries of R and O

Computing Minkowski sums

R
-R

2D
• convex + convex polygons

• The Minkowski sum of two convex polygons with n, and m edges
respectively, is a convex polygon with n+m edges and can be computed in
O(n+m) time.

• convex + non-convex polygons
• triangulate them, and compute Minkowski sums for each pair of triangles,

and take their union
• size of Minkowski sum: O(mn)

• non-convex + non-convex polygons:
• size of Minkowski sum: O(n2m2)

3D
• it gets worse . . .

Computing Minkowski sums

Polygonal robot translating in 2D

Algorithm

• For each obstacle O, compute the
corresponding C-obstacle

• Compute the union of C-obstacles
• Compute its complement. That’s the

free C-space

 //now the problem is reduced to point

 //robot moving in free C-space
• Compute a trapezoidal map of free

C-space
• Compute a roadmap

O

O

O

For a convex robot of O(1) size
• Free C-space can be

computed in O(n lg2n) time.

 ==> With O(n lg2n) time pre-
processing, a collision-free path
can be found for any start and
end in O(n) time.

Complete, non optimal.

Polygonal robot in 2D with rotations

• Physical space is 2D
• A placement is specifies by 3 parameters: R(x,y, theta) ==> C-space is 3D.

• We’d like to extend the same approach:

 Reduce to point robot moving among C-obstacles in C-space.
• Compute C-obstacles
• Compute free space as complement of union of C-obstacles
• Decompose free space into simple cells
• Construct a roadmap
• BFS on roadmap

Polygonal robot in 2D with rotations

• What does a C-obstacle look like when rotations are allowed?

O

R(0,0, 0)

Polygonal robot in 2D with rotations

θ
x

y

O

R(0,0, 0)

θ
x

y

Polygonal robot in 2D with rotations

• What does a C-obstacle look like when rotations are allowed?

O

R(0,0,20)

Polygonal robot in 2D with rotations

θ
x

y

• What does a C-obstacle look like when rotations are allowed?

O

R(0,0,20)

Polygonal robot in 2D with rotations

θ
x

y

• What does a C-obstacle look like when rotations are allowed?

A C-obstacle is a 3D shape.

Imagine moving a horizontal plane vertically
through C-space.

Each cross-section of the C-obstacle is a
Minkowski sum O + -R (0,0,θ)

=> twisted pillar
O

R(0,0, θ)

Polygonal robot in 2D with rotations

θ
x

y

What’s known:
• C-space is 3D

• Boundary of free space is curved, not polygonal.

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex
robot

Polygonal robot in 2D with rotations

What’s known:
• C-space is 3D

• Boundary of free space is curved, not polygonal.

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex
robot

Polygonal robot in 2D with rotations

• Extend same approach:

1. Compute C-obstacles and C-free

2. compute a decomposition of free space into simple cells

3. construct a roadmap

4. BFS on roadmap

space is 3D

Polygonal robot in 2D with rotations

• Difficult to construct a good cell decomposition for curved 3D space

• A simpler approach:
• For a fixed angle you got translational motion planning
• Discretize rotation angle and compute a finite number of slices, one for each

angle
• Construct a trapezoidal decomposition for each slice
• Add edges between slices to allow robot to move up/down between slices (this

correspond to rotational moves)
 => 3D graph

Is this complete?

Heuristical/approximate motion planning

• Approximate cell decomposition
• grid
• quadtrees

• Potential field
• Roadmaps

• Incremental sampling
• Probabilistic roadmaps

• Hybrid

search/explore free
space:

AI search heuristics

Issues:
 huge C-space, local minima
 performance guarantees? completeness? optimality?

Potential field methods

• Idea:
• Define a potential field
• Robot moves in the direction of steepest descent on potential function

• Ideally potential function has global minimum at the goal, has no local
minima, and is very large around obstacles

• Algorithm outline:
• place a regular grid over C-space
• search over the grid with potential function as heuristic

• Con: can get stuck in local minima

