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Motion Planning 

Input:    
• a robot R and  a set of obstacles S = {O1, O2,…} 
• start position pstart 
• end position pend 

Find a path from start to end (that optimizes some objective function).

• Ideally we would like a planner that’s complete and optimal.  
• A planner is complete:  

• it always finds a path when a path exists 
• A planner is optimal:  

• it finds an optimal path 



Applications



Motion Planning 

Combinatorial motion planning  
• Point robot in 2D 

• Roadmaps via trapezoid decomposition 
• Shortest paths: Visibility graph 

• Polygon robot in 2D  
• Translation only 
• Handling rotation 

Approximate motion planning 

today



Point robot in 2D
• General idea 

• Compute a trapezoid decomposition of free space  
• Build a graph (roadmap) of free space  
• Search graph to find path   <---------- Reduce motion planning to graph search 



Polygonal robot in 2D

• Robot R(x,y) 
• The C-obstacle corresponding to obstacle O represents the set of all 

placements that cause intersection with O. 

O

C-obstacle corresponding to O



• Robot R(x,y) 
• The C-obstacle corresponding to obstacle O represents the set of all 

placements that cause intersection with O. 

Polygonal robot in 2D



Exercise

r

robot

Show the corresponding C-obstacles for a disc robot.



Exercise

Show the corresponding C-obstacle.

robot



Polygonal robot translating in 2D

Algorithm 

• For each obstacle O, compute the 
corresponding C-obstacle 

• Compute the union of C-obstacles 
• Compute its complement. That’s the 

free C-space 

 //now the problem is reduced to point    

    //robot moving in free C-space 
• Compute a trapezoidal map of free C-

space 
• Compute a roadmap

O

O

O

How fast can we do this?



How do we compute C-obstacles?



Minkowski sum
• Let A, B two sets of points in the plane  
• Define A + B =  { x + y | x in A, y in B}            Minkowski sum 

• Interpretation:   consider set A to be centered at the origin. Then A + B 
represents many copies of A, translated by y, for all y in B; i.e. place a copy of 
A centered at each point of B.
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Minkowski sum

• A + B: Slide A so that the center of A traces the edges of B 
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C-obstacles as Minkowski sums

BB
x

x+R

R translated by x

B

B +  R

R R

R

R

R
RR

R

R
R

R

• Consider a robot R with the center in the lower left corner



C-obstacles as Minkowski sums

B + R is not quite the C-obstacle of B

• Consider a robot R with the center in the lower left corner
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-R: R reflected by origin
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The C-obstacle of B is B + (- R(0,0)).

C-obstacles as Minkowski sums



O

C-obstacle corresponding to O

Slide so that R touches the obstacle Find O + (-R)



O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R  traces 
the edges of obstacle



How do we compute Minkowski sums?

C-obstacle corresponding to O

R

-R



Computing Minkowski sums

R
-R



CASE 1: Convex robot with convex polygon

Computing Minkowski sums

R
-R



CASE 1: Convex robot with convex polygon

Observations: 

Computing Minkowski sums

R
-R



CASE 1: Convex robot with convex polygon

Observations: 
• Each edge in R, O will cause an edge in R+O

Computing Minkowski sums

R
-R



CASE 1: Convex robot with convex polygon

Observations: 
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges unless there are parallel edges

Computing Minkowski sums

R
-R



CASE 1: Convex robot with convex polygon

Observations: 
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges unless there are parallel edges
• To compute: Place -R at all vertices of O and compute convex hull 

Computing Minkowski sums

R
-R



CASE 1: Convex robot with convex polygon

Observations: 
• Each edge in R, O will cause an edge in R+O
• R+O has m+n edges unless there are parallel edges
• To compute: Place -R at all vertices of O and compute convex hull 
• Possible to compute in O(m+n) time by walking along the boundaries of R and O

Computing Minkowski sums

R
-R



2D
• convex + convex polygons

• The Minkowski sum of two convex polygons with n, and m edges 
respectively, is a convex polygon with n+m edges and can be computed in 
O(n+m) time. 

• convex + non-convex polygons
• triangulate them, and compute Minkowski sums for each pair of triangles, 

and take their union
• size of Minkowski sum:  O(mn)

• non-convex + non-convex polygons: 
• size of Minkowski sum: O(n2m2)

3D 
• it gets worse . . . 

Computing Minkowski sums 



Polygonal robot translating in 2D

Algorithm 

• For each obstacle O, compute the 
corresponding C-obstacle 

• Compute the union of C-obstacles 
• Compute its complement. That’s the 

free C-space 

 //now the problem is reduced to point    

    //robot moving in free C-space 
• Compute a trapezoidal map of free 

C-space 
• Compute a roadmap

O

O

O

For a convex robot of O(1) size
• Free C-space can be 

computed in O(n lg2n) time.  

 ==> With O(n lg2n)  time pre-
processing, a collision-free path 
can be found  for any start and 
end in O(n) time.  

Complete, non optimal. 



Polygonal robot in 2D with rotations 

• Physical space is 2D  
• A placement is specifies by 3 parameters: R(x,y, theta)  ==> C-space is 3D. 



• We’d like to extend  the same approach:  

 Reduce to point robot moving among C-obstacles in C-space.  
• Compute C-obstacles  
• Compute free space as complement of union of C-obstacles 
• Decompose free space into simple cells  
• Construct a roadmap  
• BFS on roadmap

Polygonal robot in 2D with rotations 



• What does a C-obstacle look like when rotations are allowed? 

O

R(0,0,  0)

Polygonal robot in 2D with rotations 
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R(0,0,  0)
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Polygonal robot in 2D with rotations 

• What does a C-obstacle look like when rotations are allowed? 
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R(0,0,20)

Polygonal robot in 2D with rotations 
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• What does a C-obstacle look like when rotations are allowed? 
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R(0,0,20)

Polygonal robot in 2D with rotations 

θ
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• What does a C-obstacle look like when rotations are allowed? 



A C-obstacle is a 3D shape.  

Imagine moving a horizontal plane vertically 
through C-space.  

Each cross-section of the C-obstacle is a 
Minkowski sum O + -R (0,0,θ)  

=> twisted pillar
O

R(0,0,  θ)

Polygonal robot in 2D with rotations 
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What’s known:  
• C-space is 3D 

• Boundary of free space is curved, not polygonal.  

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex 
robot

Polygonal robot in 2D with rotations 



What’s known:  
• C-space is 3D 

• Boundary of free space is curved, not polygonal.  

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex 
robot

Polygonal robot in 2D with rotations 

• Extend same approach:  

1. Compute C-obstacles and C-free 

2. compute a decomposition of free space into simple cells  

3. construct a roadmap  

4. BFS on roadmap  

space is 3D



Polygonal robot in 2D with rotations 

• Difficult to construct a good cell decomposition for curved 3D space 

• A simpler approach:   
• For a fixed angle you got  translational motion planning 
• Discretize rotation angle and compute a finite number of slices, one for each 

angle 
• Construct a trapezoidal decomposition for each slice  
• Add edges between slices to allow robot to move up/down between slices  (this  

correspond to rotational moves) 
 => 3D graph

Is this complete?



Heuristical/approximate motion planning 

• Approximate cell decomposition  
• grid 
• quadtrees 

• Potential field  
• Roadmaps 

• Incremental sampling 
• Probabilistic roadmaps  

• Hybrid 

search/explore free 
space:  

AI search heuristics 

Issues:   
 huge C-space, local minima  
 performance guarantees? completeness? optimality? 



Potential field methods 

• Idea:  
• Define a potential field  
• Robot moves in the direction of steepest descent on potential function  

• Ideally potential function has global minimum at the goal, has no local 
minima, and is very large around obstacles  

• Algorithm outline:  
• place a regular grid over C-space 
• search over the grid with potential function as heuristic 

• Con: can get stuck in local minima 


