Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

The Art Gallery Problem

The Art Gallery Problem

Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.

The Art Gallery Problem

Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.

What does the guard see?

The Art Gallery Problem

Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.

What does the guard see?
We say that two points a, b are visible if segment $a b$ stays inside P (touching boundary is ok).

The Art Gallery Problem

Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.

What does the guard see?
We say that two points a, b are visible if segment $a b$ stays inside P (touching boundary is ok).

The Art Gallery Problem

Imagine an art gallery whose floor plan is a simple polygon, and a guard (a point) inside the gallery.

What does the guard see?
We say that two points a, b are visible if segment $a b$ stays inside P (touching boundary is ok).

The Art Gallery Problem

We say that a set of guards covers P if every point in P is visible to al test one guard.

Questions:

- Given P, what is the smallest number of guards (and their locations) to cover P?
- NP-complete
- Klee's problem: Given a polygon of n vertices, what is the minimum number of guards to cover the polygon? Find the maximum over all polygons of size n.

Klee's Problem

Notation

- P_{n} : polygon of n vertices
- $g(P)=$ the smallest number of guards to cover P
- let $G(n)=\max \left\{g\left(P_{n}\right) \mid a l l P_{n}\right\}$
- $G(n)$ is the smallest number of guards necessary to guard a polygon of n vertices
- Klee's problem: find G(n)
- Note
- $G(n)$ is necessary: there exists a P_{n} that requires $G(n)$ guards
- $G(n)$ is sufficient: any P_{n} can be guarded with $G(n)$ guards
- Trivial bounds
- $G(n)>=1$
- $G(n)<=n$ (place one guard in each vertex)

Klee's Problem
$n=3$

$G(3)=1$

Klee's Problem

$\mathrm{n}=4$

$G(4)=1$

Klee's Problem

$$
n=5
$$

$G(5)=1$

Klee's Problem

Klee's Problem

$G(n)=$?
Come up with a P_{n} that requires as many guards as possible.

Klee's Problem

$\mathrm{G}(\mathrm{n})=$?
Come up with a P_{n} that requires as many guards as possible.

Klee's Problem

$\mathrm{G}(\mathrm{n})=$?
Come up with a P_{n} that requires as many guards as possible.

Klee's Problem

【n/3」necessary

Klee's Problem

It was shown that $\lfloor n / 3\rfloor$ is also sufficient:
that is, any Pn can be guarded with at most $\lfloor\mathrm{n} / 3\rfloor$ guards

- (Complex) proof by induction
- Simple and beautiful proof due to Fisk (Bowdoin Math faculty)

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored
3. Observe that placing the guards at all the vertices assigned to one color guarantees the polygon is covered.
4. There must exist a color that's used at most $n / 3$ times. Pick that color and place guards at the vertices of that color.

Fisk's proof of sufficiency

1. Any polygon can be triangulated

Fisk's proof of sufficiency

1. Any polygon can be triangulated

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

1. Any polygon can be triangulated
2. Any triangulation can be 3-colored.

Fisk's proof of sufficiency

- Placing guards at vertices of one color covers P.

Fisk's proof of sufficiency

- Placing guards at vertices of one color covers P.

Fisk's proof of sufficiency

- Placing guards at vertices of one color covers P.
- Pick least frequent color! At most n/3 vertices of that color.

Fisk's proof of sufficiency

1. Any polygon can be triangulated

2. Any triangulation can be 3-colored

3. Observe that placing the guards at all the vertices assigned to one color guarantees the polygon is covered.
4. There must exist a color that's used at most $n / 3$ times. Pick that color and place guards at the vertices of that color.

The proofs

We want to prove that:

Theorem: Any polygon can be triangulated.

Polygon triangulation

Given a simple polygon P, a diagonal is a segment between 2 nonadjacent vertices that lies entirely within the interior of the polygon.

Polygon triangulation

Given a simple polygon P, a diagonal is a segment between 2 nonadjacent vertices that lies entirely within the interior of the polygon.

Polygon triangulation

Theorem: Any simple polygon has at least one convex vertex.
Proof:

Polygon triangulation

Theorem: Any simple polygon with $n>3$ vertices contains (at least) a diagonal. Proof:

Fisk's proof of sufficiency

Theorem: Any polygon can be triangulated
Proof:

Fisk's proof of sufficiency

Theorem: Any triangulation can be 3-colored.
Proof:

