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What does the guard see? 
We say that two points a, b are visible if segment ab stays inside P (touching boundary is ok).



We say that a set of guards covers P if every point in P is visible to al test one guard. 

Questions:  
• Given P, what is the smallest number of guards (and their locations) to cover P? 

• NP-complete 
• Klee’s problem: Given a polygon of n vertices, what is the minimum number of guards to 

cover the polygon? Find the maximum over all polygons of size n. 

The Art Gallery Problem



Notation 
• Pn: polygon of n vertices 
• g(P) = the smallest number of guards to cover P 
• let G(n) = max { g(Pn) | all Pn}   
• G(n) is the smallest number of guards necessary to guard a polygon of n vertices 

• Klee’s problem: find G(n) 
• Note 

• G(n) is necessary: there exists a Pn that requires G(n) guards 
• G(n) is sufficient: any Pn can be guarded with G(n) guards 

• Trivial bounds  
• G(n) >= 1 
• G(n) <= n  (place one guard in each  vertex)
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n=6 

Klee’s Problem

G(6) = 2



G(n) = ?  

Come up with a Pn that requires as many guards as possible. 
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 n/3   necessary

Klee’s Problem



It was shown that  n/3   is also sufficient:  

that is, any Pn can be guarded with at most n/3   guards 

• (Complex) proof by induction  
• Simple and beautiful proof due to Fisk (Bowdoin Math faculty)

Klee’s Problem



1. Any polygon can be triangulated 

2. Any triangulation can be 3-colored 

3. Observe that placing the guards at all the vertices assigned to one 
color guarantees the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color 
and place guards at the vertices of that color. 
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• Placing guards at vertices of one color covers P. 
• Pick least frequent color! At most n/3 vertices of that color. 
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1. Any polygon can be triangulated 

2. Any triangulation can be 3-colored 

3. Observe that placing the guards at all the vertices assigned to one 
color guarantees the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color 
and place guards at the vertices of that color. 

Fisk’s proof of sufficiency

to do
to do



The proofs



We want to prove that:  

Theorem: Any polygon can be triangulated. 



Given a simple polygon P, a diagonal is a segment between 2 non-
adjacent vertices that lies entirely within the interior of the polygon.  
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Theorem: Any simple polygon has at least one convex vertex. 

Proof: 

Polygon triangulation



Theorem: Any simple polygon with n>3 vertices contains (at least) a diagonal. 

Proof: 

Polygon triangulation
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Proof: 

Fisk’s proof of sufficiency



Theorem: Any triangulation can be 3-colored. 

Proof: 

Fisk’s proof of sufficiency


