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Polygon Triangulation



Polygon P 

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

A diagonal is a segment between 2 non-adjacent 
vertices that lies entirely within the interior of the polygon. 



Polygon P 

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

A diagonal is a segment between 2 non-adjacent 
vertices that lies entirely within the interior of the polygon. 

diagonal

NOT diagonal



Polygon P 

Triangulation of P: a partition of P into triangles using a set of diagonals.

Polygon Triangulation: Definition

not unique



Given a polygon P, triangulate it.  

(output a set of diagonals that partition the polygon into triangles).

Polygon Triangulation: The problem



Motivation

Partitioning into simpler shapes: technique for dealing with complexity  

2D: polygon triangulation 

3D: meshing



Motivation

Art gallery , Fisk’s proof 

1. Any simple polygon can be triangulated. 

2. Any triangulated simple polygon can be 3-colored. 

3. Placing the guards at all the vertices assigned to one color guarantees 
the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color 
and place guards at the vertices of that color. 



Does a triangulation always exist?

YES. The key to proving this is that any polygon (n>3) has a diagonal.  



• Theorem 1: Any simple polygon must have a convex vertex (angle <180).  

• Theorem 2: Any simple polygon with n>3 vertices contains (at least) a diagonal. 

• Theorem 3: Any polygon can be triangulated by adding diagonals. 

• Theorem 4: Any triangulation of a polygon of n vertices has n-2 triangles and n-3 
diagonals. 

• Theorem 5: Any simple polygon has at least two ears. 

Known Results



Theorem 1: Any simple polygon contains at least one convex vertex 

the angle is <180

pick the lowest vertex of the polygon



Theorem 2: Any simple polygon contains at least one diagonal.  

case1: 
this is a diagonal

case2:  
this is a diagonal

convex vertex

the first vertex  
hit by a horizontal line  

moving  up from v



Theorem 3: Any polygon can be triangulated by adding diagonals 

Proof: By induction on the size of the polygon 

          if n=3,  holds trivially  

Assume it holds for any k < n. Partition P into two polygons with a 
diagonal. Each one has < n vertices, and can be triangulated by ind. hyp.



Theorem 2: Any simple polygon contains at least one diagonal. 

this is a diagonal

the first vertex  
hit by a horizontal line  

moving  up from v



We want to triangulate a polygon



• Idea:  

• Find a diagonal  

• Recurse  

• Let’s come up with an algorithm to determine if two vertices of P form a 

diagonal:

Naive triangulation by recursively finding diagonals 

isDiagonal( )pi, pj

• Assume P is a polygon given as a vector of points (in ccw order along boundary)



isDiagonal(a,b):  

//does any of the edges intersect ab? 

• for i=0, i<n, i++:  

• if  intersects ab:  return False  

//if we got here, we know that ab intersects no edge. The only   thing left to 

check is whether it’s inside or outside P 

• return True if inside, False if outside

pip(i+1)mod n

• Let P be a polygon given as a vector of points

• ab is diagonal if it does not intersect the edges of P and is interior to P

actually: intersection at 
vertices is ok for the edges 
adjacent to a and b



actually: intersection at 
vertices is ok for the edges 
adjacent to a and b



isDiagonal(a,b):  

//does any of the edges intersect ab? 

• for i=0; i< n; i++ 

• if :  

return False  

//if we got here, we know that ab intersects no edge. The only  thing left to check is 
whether it’s inside or outside P 

• return True if inside, False if outside

a! = pi and a! = p(i+1)mod n and b! = pi and b! = p(i+1)mod n and intersect(a, b, pi, p(i+1)mod n)

• Let P be a polygon given by a vector of vertices P



• So ab does not intersect any edges.  Is ab interior or exterior?

a b a
b

not a diagonal diagonal



a
b

• So ab does not intersect any edges.  Is ab interior or exterior?

a b

a+

a- a+

a-

not a diagonal diagonal

ab is inside the cone formed by a−, a, a+ab outside a−, a, a+



• InCone(a, b): return True if ab is in the cone determined by a−, a, a+

a

a+
a-

b

a

a+

a-

b

True True



• InCone(a, b): return True if ab is in the cone determined by a−, a, a+

a

a+
a-

b

a

a+

a-

b

In this case  and  may be 
both to the left of ab, or both to 
the right, or one on each side 

a− a+

In this case  and  must be 
one on each side 

a− a+

But:  is convex, and  
is internal to  if it is not 
internal to the convex  

a+aa− ab
a−aa+

a+aa−



• InCone(a, b): return True if ab is in the cone determined by a−, a, a+

a

a+
a-

b

a

a+

a-

b

• InCone(point2d a, b) 

• point before a 

• point after a 

//if a is a convex vertex  

• if LeftOn :      return Left( ) && Left( ) 

//else its a reflex vertex  

• return    !(  LeftOn( )  &&  LeftOn( ) )

a− =
a+ =

(a−, a, a+) a, b, a− b, a, a+

a, b, a+ b, a, a−

Note: strict Left() to exclude  
ab collinear overlap with the cone 

//a, b must be points in P



isDiagonal(a,b):  

//does any of the edges intersect ab? 

• for i=0; i< n; i++ 

• if :  

return False  

//if we got here, we know that ab intersects no edge properly. The only  thing left to 
check is whether it’s inside or outside P 

• return  inCone(a, b) && InCone(b, a)

a! = pi and a! = p(i+1)mod n and b! = pi and b! = p(i+1)mod n and intersect(a, b, pi, p(i+1)mod n)

Putting it all together: Is ab a diagonal?

O(n)

O(1)

Overall: O(n) time

//a, b must be points in P



In conclusion,  
we can test if ab is a diagonal in O(n) time



Straightforward way to find a diagonal:

• for i=0, i<n, i++ 

• for j=i+1, j<n, j++ 

• check if  is diagonalpipj



• Algorithm 1: Triangulation by finding diagonals 
• Idea: Check all pairs of vertices to find one which is a diagonal; recurse.  
• Analysis:  

• checking all vertices:  O(n2) candidates for diagonals, checking each 
takes O(n), overall O(n3) 

• recurse, worst case on a problem of size n-1 
• overall O(n4) 

• Algorithm 2: Triangulation by smartly finding diagonals 
• A diagonal  can be found in O(n) time (using the proof  that a diagonal exists) 
• Idea: Find a diagonal, output it, recurse.  
•  O(n2)

Naive triangulation by recursively finding diagonals 



Algorithm 3: Triangulation by finding ears



A vertex  of P is called ear if  is a diagonalp p−p+



Theorem: Any simple polygon has at least two ears.



Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. 



Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. Consider the dual graph. 



Theorem: Any simple polygon has at least two ears.
Proof: Triangulate P. Consider the dual graph. The dual graph is a 
tree. Any tree has at least two leaves. A leaf => ear 



Algorithm 3: Triangulation by finding ears

•  Traverse P and for each point p, determine if it’s an ear 
•  When find a ear p: recurse on the remaining P



Algorithm 3: Triangulation by finding ears

•  Traverse P and for each point p, determine if it’s an ear 
•  When find a ear p: recurse on the remaining P

O(n)

O(n)

T(n) = T(n-1) +O(n2)  => O(n3)



• Idea: Avoid recomputing ear status for all vertices every time

Algorithm 4: Improved ear removal

E
E

E

E

E

E

x
x

x

x

x

x

x
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Algorithm 4: Improved ear removal

E
E

E

E

E

E

x
x

x
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x

x

x
x

x

x

• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?
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• When you remove an ear tip from the polygon, which vertices 

might change their ear status?
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• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal
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• Idea: Avoid recomputing ear status for all vertices every time 
• When you remove an ear tip from the polygon, which vertices 

might change their ear status?

Algorithm 4: Improved ear removal

E

E

x
x

x

x

x

x

x
x

x

x

E

and so on



• Initialize the ear tip status of each vertex of P 

• while n>3 do:  

• locate an ear tip p 

• output diagonal  

• delete p  

• update ear tip status of  and 

p−p+

p− p+

Algorithm 4: Improved ear removal

Or, with a bit more detail, 



//Initialize the ear tip status of each vertex of P 

• for i=0, i<n, i++ 

•  is ear if isDiagonal( ) 

• while n>3 do:  

• i=0 

• while i < P.size():  

• if p[i] is ear:  

• output diagonal  

• update ear status for  and  

• delete p[i] from P and  set n = n-1 

• else: i++

p− p−p+

p[i − 1]p[i + 1]

p[i − 1] p[i + 1]

Algorithm 4: Improved ear removal



//Initialize the ear tip status of each vertex of P 

• for i=0, i<n, i++ 

•  is ear if isDiagonal( ) 

• while n>3 do:  

• i=0 

• while i < P.size():  

• if p[i] is ear:  

• output diagonal  

• update ear status for  and  

• delete p[i] from P and  set n = n-1 

• else: i++

p− p−p+

p[i − 1]p[i + 1]

p[i − 1] p[i + 1]

Algorithm 4: Improved ear removal

O(n2)

this takes O(n)

a vertex causes ear status updates 
 for 2 other vertices 

Overall: O(n2) time O(n) ear status updates 



History of Polygon Triangulation

• Early algorithms: O(n4), O(n3), O(n2)  
• Several O(n lg n) algorithms known 
• … 
• Many papers with improved bounds 
• … 
• 1991: Bernard Chazelle (Princeton) gave an O(n) algorithm  

• https://www.cs.princeton.edu/~chazelle/pubs/polygon-triang.pdf 
• Ridiculously complicated, not practical  
• O(1) people actually understand it  (seriously) (and I’m not one of them) 

• No algorithm is known that is practical enough to run faster than the O( n lg n) algorithms 
• OPEN problem 

• A practical algorithm that’s theoretically better than O(n lg n).

practical

not practical



• Ingredients  

• Triangulate monotone/unimonotone polygons  

• Convert an arbitrary polygon into monotone/unimonotone polygons 

An O(n lg n) Polygon Triangulation Algorithm



Monotone chains

A polygonal chain is x-monotone if any line perpendicular to x-axis intersects 
it in one point (one connected component).

• Let P be a vector of points, not necessary a polygon  

(polygonal chain)



Monotone chains

A polygonal chain is x-monotone if any line perpendicular to x-axis intersects 
it in one point (one connected component).

one point one connected  
component



Monotone chains

Not x-monotone



Monotone chains

• Claim: Let u and v be the points on the chain with min/max x-coordinate. 
The vertices on the boundary of an x-monotone chain, going from u to v, 
are in x-order.

x-monotone

u
v

a

c

b



Monotone chains

not x-monotonex-monotone

As you travel along this chain, your x-
coordinate is staying the same or increasing



In general..

A polygonal chain is y-monotone if any line perpendicular to y-axis intersects 
it in one point (one connected component).

y-monotone not y-monotone



In general..

A polygonal chain is L-monotone if any line perpendicular to line L intersects 
it in one point (one connected component).

L-monotone not L-monotone

L



Monotone polygons

A polygon is x-monotone if its boundary can be split into two x-monotone chains.



Monotone polygons

xmin xmaxThe vertices on each chain are sorted w.r.t. x-axis.

A polygon is x-monotone if its boundary can be split into two x-monotone chains.



Monotone polygons

x-monotone y-monotone



Monotone Mountains (unimonotone polygons)

A polygon is an x-monotone mountain if it is monotone and one of the two chains 
is a single segment.



xmin xmax

A polygon is an x-monotone mountain if it is monotone and one of the two chains 
is a single segment.

Both endpoints have to be convex.

Monotone Mountains (unimonotone polygons)



Monotone mountains are easy to triangulate! 

Class work: Let’s come up with an algorithm (and analyze it).  



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

Yes!



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

NO!



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

Yes!



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

Yes!



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

No!



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 



Monotone mountains are easy to triangulate! 

Analysis: O(n) time



Monotone polygons can (also) be triangulated in O(n) time

Monotone polygons



Monotone polygons

Same idea:  pick the next vertex in x-order (on upper or lower chain). Connect it 
to all vertices after it that are visible via a diagonal. Continue to the next vertex.  

O(n) time 



Towards an O(n lg n) Polygon Triangulation Algorithm

OR

Partition into  
monotone polygons

Triangulate 
monotone polygons

polygon P

?

triangulated P

?

Partition into  
unimonotone polygons

Triangulate 
unimonotone polygons triangulated P

polygon P



Want: partition a polygon into monotone pieces

(or:  monotone mountains)



Intuition

x-monotone not x-monotone

What makes a polygon not monotone?



Intuition

x-monotone not x-monotone

What makes a polygon not monotone?

Cusp: a reflex vertex v such that the vertices before and after 
are both smaller or both larger than v (in terms of x-coords).

• Theorem: If a polygon has no cusps, then it’s monotone. 
• (Intuitively clear, but proof is tedious)



• We’ll partition a polygon into monotone pieces by getting rid of cusps 

• We’ll do this by partitioning P into trapezoids (trapezoidation)

Overview: An O(n lg n) polygon triangulation algorithm

Compute a 
trapezoid partition

polygon P
Partition P into 

monotone pieces
triangulate 

monotone pieces triangulated P



What on earth is a trapezoid partition?

• So, we want to partition a polygon into simpler pieces 

• What is the simplest sort of partition that you can think of?  

• Shoot vertical rays and partition the interior of the polygon into vertical strips 

• That’s exactly a trapezoid partition



Trapezoid partitions

Shoot vertical rays from each vertex  
•   If polygon is above vertex, shoot vertical ray up (until reaches boundary) 
•   If f polygon is below vertex, shoot down  
•   If polygon is above and below vertex, shoot both up and down  



• Each polygon in the partition is a trapezoid, because:  
• It has one or two rays as sides.  
• If it has two, they must both hit the same edge above, and the same edge below. 

• Size of trapezoid partition?  
• At most one ray through each vertex => O(n) threads => O(n) trapezoids

Trapezoid partitions: Properties



Trapezoid partitions

• Each trapezoid has precisely two vertices of the polygon, one on the left and 
one on the right. They can be on the top, bottom or middle of the trapezoid.



• In each trapezoid: if its two vertices are not on the same edge, they define a 
diagonal.

Diagonals

• Why? The interior of a trapezoid cannot have any vertices/edges in its  it, so the vertices of P on 
its boundary must be visible to each other.  

• If we know the trapezoid partition, this gives us (some) diagonals of P



• In each trapezoid: if its two vertices are not on the same edge, they define a 
diagonal.

Diagonals

• Why? The interior of a trapezoid cannot have any vertices/edges in its  it, so the vertices of P on 
its boundary must be visible to each other.  

• If we know the trapezoid partition, this gives us (some) diagonals of P



• For a leftward cusp vertex: consider the trapezoid to its right 
• For a rightward cusp: consider the trapezoid to its left 
• Consider those diagonals. 

Remember our problem: cusp vertices



• For a leftward cusp vertex: consider the trapezoid to its right 
• For a rightward cusp: consider the trapezoid to its left 
• Consider those diagonals. They partition P into (3) pieces.

Remember our problem: cusp vertices



• For a leftward cusp vertex: consider the trapezoid to its right 
• For a rightward cusp: consider the trapezoid to its left 
• Consider those diagonals. They partition P into (3) pieces. 
• Claim: These pieces are monotone!

Remember our problem: cusp vertices



What have we done?

x

1. Identify cusp vertices 
2. Compute a trapezoid partition of P 
3. For each cusp: Add diagonal before/after

Claim: these pieces are x-monotone



Why does this work?

x

x1

x2 x4

x3
x1 < x3 < x4

x2 < x3 < x4

diagonal is after the cusp:  x3 < x4



Why does this work?

x

x1

x2 x4

x3
x1 < x3 < x4

x2 < x3 < x4

diagonal is after the cusp:  x3 < x4



Another example



Partitioning a polygon into monotone pieces

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 

3. For left cusp vertices:  add diagonal in trapezoid before the cusp 

4. For right cusp vertices: add diagonal in trapezoid after the cusp



Partitioning a polygon into monotone pieces



Partitioning a polygon into monotone pieces



Partitioning a polygon into monotone pieces



Partitioning a polygon into monotone pieces



Partitioning a polygon into monotone pieces

1. Identify cusp vertices 

2. Compute a trapezoid partition of P 

3. For left cusp vertices:  add diagonal in trapezoid before the cusp 

4. For right cusp vertices: add diagonal in trapezoid after the cusp 

This partition P into pieces, and these pieces are monotone.



ax

bx

cx

dx

We know:  
 because vertex a is a cusp 

ax < {bx, dx}

We know:  because   
is a diagonal in the trapezoid before the cusp 

dx < ax ad

Why are the pieces monotone?



Why does this work?



Where we are:

Compute a 
trapezoid partition

polygon P
Partition P into 

monotone pieces
triangulate 

monotone pieces triangulated P

O(n) O(n)

Given a trapezoid partition of P,  we can partition into monotone polygons and 
triangulate it in O(n) time.



A small detour

Before we discuss how to compute a trapezoid partition of P, 

• It turns out it is possible (and quite simple!) to use a trapezoid partition to 

partition P into monotone mountains 



Diagonals

• Given a trapezoid partition of P, 

• For each trapezoid, if its two vertices of P are not on same edge, output that 
as a diagonal 

• This gives a new partition of P. Can we say anything about these pieces?



Diagonals

• Given a trapezoid partition of P, 

• For each trapezoid, if its two vertices of P are not on same edge, output that 
as a diagonal 

• This gives a new partition of P. Can we say anything about these pieces?



Diagonals

• Given a trapezoid partition of P, 

• For each trapezoid, if its two vertices of P are not on same edge, output that 
as a diagonal 

• This gives a new partition of P. Can we say anything about these pieces?



Claim: All diagonals partition the polygon into monotone mountains.



Why? 

• Each “internal” trapezoid in a polygon must have the polygon vertices either 
both above (or both below), otherwise they would generate a diagonal => all 
internal trapezoids have same edge below/above => one edge 

Claim: All diagonals partition the polygon into monotone mountains.



Compute a trapezoid partition and show the diagonals 

Another example







==> All internal trapezoids have same 
edge below 

Each trapezoid must have the polygon 
vertices both above or both below (otherwise 
they would generate a diagonal)

There is no diagonal in here

Let’s look at one of these pieces



There is no diagonal in here

same argument ==> All internal trapezoids 
have same edge below 

Every piece is a monotone mountain!



End detour



Partition P 
into monotone 

mountains

triangulate 
monotone mountains

triangulated P

O(n)

In fact, a trapezoid partition can 
give a partition into monotone 

mountains

Compute a 
trapezoid partition

polygon P
Partition P into 

monotone pieces
triangulate 

monotone pieces triangulated P

O(n) O(n)

Where we are:

Given a trapezoid partition of P,  we can partition into monotone polygons and 
triangulate it in O(n) time.

O(n)



Compute a 
trapezoid partition

polygon P

The missing piece:

How to compute a trapezoid partition?



Computing the trapezoid partition

Naive algorithm? 



Naive algorithm: for each vertex, shoot a vertical ray through it and compute the “closest” 

edge(s) that intersects it…  [Note: This part only takes ]O(n2)

shoot ray down

shoot ray up

shoot ray up and down

no ray



shoot ray upshoot ray up

Some cases (not all).  How to distinguish between these cases?



Some cases (not all).  How to distinguish between these cases?

shoot ray down



Some cases (not all).  How to distinguish between these cases?

shoot ray up and down



Some cases (not all).  How to distinguish between these cases?

no ray

no ray



Assume P is given so that  is ccw 

Fact: The polygon is to the left of every edge. 

We can figure out which case we are in …

∂P

v is convex  
and  

 are both below v−, v+ vy

 v convex if  LeftOf v−, v, v+

shoot ray down



 v is convex  
and  

 are to the right of v− and v+ vx
v is convex  

and  
 are both above v−, v+ vy

 v convex if  LeftOf v−, v, v+

no ray

no ray



v is reflex  
and  

 are both below v−, v+ vy

v is reflex  
and  

 are both above v−, v+ vy

 v convex if  LeftOf v−, v, v+

shoot ray down

shoot ray up



 v is left cusp:  
reflex and  
 are to the left of v− and v+ vx

 v is right cusp:  
reflex and  
 are to the right of v− and v+ vx

 v convex if  LeftOf v−, v, v+

shoot ray up 
and down

And so on. 

Summary: these cases can be figured out.



Back to computing the trapezoid partition

Naive algorithm: for each vertex, shoot a vertical ray through it and compute the “closest” 
edge that intersects it…  [Note: This part only takes ]O(n2)



What if all the edges that intersect the ray from v sit in a nice structure 
in y-order?

v

we want the first edge below v

e1

e2

e3

e1 e2 e3< < < …….<

This edge is pred(vy) in this list

If we can get this edge 
=> compute the 
intersection point



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices

 event 1



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices

insert

insert
 event 1



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices

 event 2



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices

 event 2

insert

insert



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices

 event 3



Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices

insert
delete

 event 3



 event 4

Computing the trapezoid partition in O(n lg n)

• Line sweep

events = polygon vertices



Computing the trapezoid partition in O(n lg n)

• Line sweep

\

 event 4

insert
delete



y

• Active structure: edges that intersect current sweep line, in y-order,  kept in 

a BBST       

e1

e2

e3

e4

e1 e2 e3 e4< < <

BBST

• We use the AS to  find the first edge intersected by a ray from v  

• for upward ray:          first edge  intersected by ray is AS.succ(v) 

• for a downward ray:  first edge intersected by ray is AS.pred(v)

v



• LineSweep(V) 

• sort_by_x(V) 

• AS = { } 

• For each vertex v in x order:  

• let e1, e2 be the two edges with v as endpoint 

• if e1 is left of v: AS.delete(e1); else AS.insert(e1) 

• if e2 is left of v: AS.delete(e2); else AS.insert(e2) 

• Figure out which case v is and. how to shoot the ray (up, down, 
both, none). Use the AS to find the edge that intersects the ray 
(AS.succ(v) or AS.pred(v) or both). Compute the intersection point 

• create current trapezoid (…)

Algorithm

Analysis: O(n lg n) with a BBST



We’ve seen how to use the AS to find the edges 
intersected by the rays efficiently

Some detail left: How to set the trapezoids?



How can we determine the trapezoids?

Each trapezoid has 2 vertices of P, one on the left and one on the right



a

b

a’ b’

when sweep line reaches b 
we’ll find point b’ and “end” 

the trapezoid.

How can we determine the trapezoids?

a’, b’ are on the same edge 
which can be found using the 

AS

when sweep line reaches a, 
we’ll find point a’ and “start” 

the trapezoid.

Each trapezoid has 2 vertices of P, one on the left and one on the right



How can we determine the trapezoids?

• Let’s say we want to set up pointers from a trapezoid to its edges.



How can we determine the trapezoids?

• For e.g. in this case: 

a

b

vertex a finds a’ and “opens” the 

trapezoid: it sets a pointer to aa’, 

and top and bottom edges. 

vertex b finds b’ and 

“closes” the trapezoid: it 

sets a pointer to bb’. 

a’
b’



How can we determine the trapezoids?

• With each segment in the AS: we store a pointer to the vertical trapezoid 
directly below it (if the interior of the polygon is directly below it) 

• This pointer stores the left side of the currently open trapezoid , with that 
segment as the top side



y
this trapezoid should be “started” now

 event 1



y

this trapezoid should be “started” now

 event 2



y this trapezoid should be “started” now

 event 3



y

this trapezoid should be “started” now
 event 4



y
this trapezoid should be “started” now

 event 5



y

this trapezoid should be “started” now

and so on





Type of events



Example
Handling events, details: 

insert edges in AS

“start” trapezoid to the right of a

Do:

a



Example

delete edges from AS

“end” trapezoid to the left of a

Do:

a

b

c

Handling events, details: 



Example

b’ must be on the edge that is right below b in the active structure

b

b’

edge bd becomes active (insert bd in AS)

“start” the trapezoid right of bb’

edge ab become inactive (delete ab from AS)

“end” prev. trapezoid to the left of bb’

find e = pred(b) in AS and find b’=intersection (ray, e) 

de
a

Do:

Handling events, details: 



Handling events, details: 



And so on…..



What have we learnt?

• A simple polygon can be triangulated in  O( n lg n) time.

Tools

line sweep

monotone mountains

monotone polygons

trapezoid partition

The end




