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1. Given a polygon P of size n, what is the smallest number of guards (and their 
locations) to cover P?   
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Questions:  

1. Given a polygon P of size n, what is the smallest number of guards (and their 
locations) to cover P?    

2. Klee’s problem: Consider all polygons of n vertices, and for each one, the 
smallest number of guards to cover it. What is the worst-case?

The Art Gallery Problem(s)

NP-Complete



Notation 

• Let Pn: polygon of n vertices 

• Let g(P) = the smallest number of guards to cover P 

• Let G(n) = max { g(Pn) | all Pn}.   

• What does this mean?  

• G(n) is the smallest number that always works for any n-gon. It is sometimes 
necessary and always sufficient to guard a polygon of n vertices. 

• G(n) is necessary: there exists a Pn that requires G(n) guards 

• G(n) is sufficient: any Pn can be guarded with G(n) guards 

• Klee’s problem: find G(n)

Klee’s problem

“n-gon”



Our goal (i.e. Klee’s goal) is to find G(n). 

Trivial bounds 
• G(n) >= 1 : obviously, you need at least one guard.  

• G(n) <= n : place one guard in each vertex 

Klee’s problem: find G(n)



n=3

Klee’s Problem

G(3) = 1

Any triangle needs at least one guard.  
One guard is always sufficient. 



n=4

Klee’s Problem

G(4) = 1

Any quadrilateral needs at least one guard.  
One guard is always sufficient. 



n=5

Klee’s Problem

G(5) = ?

Can all 5-gons be guarded by one point?



n=5

Klee’s Problem

G(5) = 1



n=6 

Klee’s Problem

G(6) = ?

Can any 6-gon be be guarded by one point?



n=6 

Klee’s Problem

G(6) = 2



G(n) = ?  

Come up with a Pn that requires as many guards as possible. 

Klee’s Problem



Klee’s Problem

How many guards does this need?



Klee’s Problem

How many guards does this need?



This polygon requires   n/3    guards         =>          G(n)  >=   n/3 

Klee’s Problem



This polygon requires   n/3    guards         =>          G(n)  >=   n/3 

Klee’s Problem

Are there Pn that require more guards,  
or,  

are  n/3 guards always sufficient for any Pn?



It was shown that  n/3   is always sufficient for any Pn: 

  Any Pn can be guarded with at most  n/3   guards. 

• (Complex) proof by induction  
• Subsequently, simple and beautiful proof due to Steve Fisk, who was Bowdoin 

Math faculty.  
• Proof in The Book. 

Klee’s Problem





1. Any simple polygon can be triangulated. 

2. A triangulated simple polygon can be 3-colored. 

3. Observe that placing the guards at all the vertices assigned to one color 
guarantees the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color and 
place guards at the vertices of that color. 

Fisk’s proof at a glance:



Given a simple polygon P, a diagonal is a segment between 2 non-
adjacent vertices that lies entirely within the interior of the polygon.  

Polygon triangulation

not diagonals

diagonals



Claim: Any simple polygon can be triangulated.  

Proof idea: induction using the existence of a diagonal. 

Polygon triangulation



Claim 1: Any simple polygon contains at least one convex vertex 

Polygon triangulation

the angle is <180

pick the lowest vertex of the polygon



Claim 2: Any simple polygon contains at least one diagonal.  

Polygon triangulation

this is a diagonal

OR: this is a diagonal



1. Any simple polygon can be triangulated 

2. Any triangulation of a simple polygon can be 3-colored.

Fisk’s proof of sufficiency



• A coloring of a graph is an assignment of colors to vertices such that no two 
adjacent vertices (vertices connected by an  edge) have the same color 

Coloring



Coloring

• The chromatic number of a graph G,  

•  = the smallest nb of colors needed to color G 

• Fundamental problem in graph theory  

• NP-complete to compute  

• Results:  

• Any planar graph can be 5-colored.  O(n) time. 

• Any planar graph can be 4-colored (proof by computer). O(n2) time. 

• Can G be 3-colored? NP-complete

χ(G)

χ(G)

χ(G)

• A coloring of a graph is an assignment of colors to vertices such that no two 
adjacent vertices (vertices connected by an  edge) have the same color 
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• Placing guards at vertices of one color covers P.
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• Placing guards at vertices of one color covers P.

Fisk’s proof of sufficiency



• Placing guards at vertices of one color covers P. 
• Pick least frequent color! At most n/3 vertices of that color. 

Fisk’s proof of sufficiency



1. Any polygon can be triangulated 

2. Any triangulation can be 3-colored 

3. Observe that placing the guards at all the vertices assigned to one 
color guarantees the polygon is covered.  

4. There must exist a color that’s used at most n/3 times. Pick that color 
and place guards at the vertices of that color. 

Fisk’s proof of sufficiency



Claim:  The set of red vertices covers the polygon.  The set of blue vertices 
covers the polygon. The set of green vertices covers the polygon.  

Because…  



There are n vertices colored with one of 3 colors.  

Claim:  There must exist a color that’s used at most n/3 times. 

Proof:  



Theorem: Any triangulation can be 3-colored. 

Proof: 


