Days 1－10

Teach yourself variables，con－ stants，arrays，strings，expres－ sions，statements，functions，．．．

Day 14611
Use knowledge of biology to make an age－reversing potion．

Days 11－21

Teach yourself program flow， pointers，references，classes， objects，inheritance，polymor－ phism，．．．．

Days 3649－7781
Teach yourself advanced theoret－ ical physics and formulate a con－ sistent theory of quantum grav－ ity．

Day 14611

Use knowledge of physics to build flux capacitor and go back in time to day 21.

Days 22－697

Do a lot of recreational program－ ming．Have fun hacking but re－ member to learn from your mis－ takes．

Days 7782－14611

Teach yourself biochemistry， molecular biology，genetics，．．．

Day 21
Replace younger self．

As far as I know，this is the easiest way to
＂Teach Yourself C＋＋in 21 Days＂．

Seriously，why is everyone in such a rush？

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Where we are

```
"Global" problems
```

Geometric search problems

- range searching
- nearest neighbor
- k-nearest neighbor
- find all roads within 1 km of current location

Techniques

- divide-and-conquer
- incremental
- plane sweep
- space decomposition

1D Range searching

Given a set of n points on the real line, preprocess them into a data structure to support fast range queries.

1D

2D Range searching

Given a set of points, preprocess them into a data structure to support fast range queries.

2D Range searching

Given a set of points, preprocess them into a data structure to support fast range queries.

2D Range searching

Given a set of points, preprocess them into a data structure to support fast range queries.

2D Range searching

Given a set of points, preprocess them into a data structure to support fast range queries.

Why?

Arise in settings that are not geometrical.
Database of stars. A star $=($ brightness, temperature,$\ldots \ldots)$
temperature

Why?

Database of employees. An employee = (age, salary, $\ldots \ldots$.)

Why?

Example of a 3-dimensional (orthogonal) range query: children in [2,4], salary in [3000, 4000], date of birth in [19,500,000 , 19, 559, 999]

- n : size of the input (number of segments)

Range searching in 2D

- k: size of output (number of points inside range)

The naive approach:

- No data structure: traverse and check in $\mathrm{O}(\mathrm{n})$
- Note: good when k is large

Points are static or dynamic?
We'll assume static (it's hard enough)

- n : size of the input (number of points)

Range searching in 2D: How?

- k: size of output (number of points inside range)

The naive approach:

- No data structure: traverse and check in O(n)
- Analysis: O(n)
- Note: good when k is large

Points are static or dynamic?
We'll assume static (it's hard enough)

We'd like to do better.
What sort of bounds can we expect?

1D range searching

1D Range searching

Given a set of n points on the real line, preprocess them into a data structure to support fast range queries.

find all values in $[2,15]$

How do we solve this and how fast?

- Input: values 1 through 30, in arbitrary order

$2 \quad$ RangeQuery ([2,29])

1D Results

- A set of n points (1D) can be pre-processed into a BBST such that:
- Build: $O(n \lg n)$
- Space: O(n)
- Range queries: $\mathrm{O}(\lg \mathrm{n}+\mathrm{k})$
- Dynamic: points can be inserted/deleted in O(lg n)

General 1D range query

1D Results

- A set of n points (1D) can be pre-processed into a BBST such that:
- Build: $O(n \lg n)$
- Space: O(n)
- Range queries: $\mathrm{O}(\lg \mathrm{n}+\mathrm{k})$
- Dynamic: points can be inserted/deleted in O(lg n)

2D

- A set of n 2d-points can be pre-processed into a structure such that:
- Build: O(n Ig n)

These bounds would be nice

- Space: O(n)
- Range queries: $\mathrm{O}\left(\lg ^{2} \mathrm{n}+\mathrm{k}\right)$

But how?

How could we use 1D structure for 2D?

Could it be as simple as ..

- Find all points with the x-coordinates in the correct range [x_{1}, x_{2}]

Could it be as simple as ..

- Find all points with the x-coordinates in the correct range [x_{1}, x_{2}]
- Out of these points, find all points with the y-coord in the correct range $\left[y_{1}, y_{2}\right]$

Could it be as simple as ..

- Find all points with the x-coordinates in the correct range [x_{1}, x_{2}]
- Out of these points, find all points with the y-coord in the correct range $\left[y_{1}, y_{2}\right]$

Does this work?

How fast is it?
Come up with a worst case scenario

We'll partition the space, store it in a data structure and use it to speed up searching

Space decomposition methods

The simplest space decomposition is a grid

The grid method

For example...

```
class Grid {
    double x1, x2, y1, y2; // the bounding box of the grid
    int m; // number of cells in the grid (m-by-m)
    double cellsize_x, cellsize_y; // size of a grid cell
    List<point2D*> ***g; //2D array of list*; g[i][j] contains the pointer
    //to the list of points that lie in cell [i][j]
```

 Grid (Point p[], int \(n\), int m);
 List<Point2D*** rangeQuery(double \(\times 1, x 2, y 1, y 2\));

 \};

The grid method

- Creating a grid of m-by-m cells from a set of points P

1. Figure out a rectangle that contains P (e.g. $\left.x_{\min }, x_{\max }, y_{\min }, y_{\max }\right)$
2. Allocate a 2d array of lists, all initially empty
3. For each point p in P : figure out which cell i, j contains p, and insert p in the list corresponding to $\mathrm{g}[\mathrm{i}][\mathrm{j}]$

The grid method

- Creating a grid of m-by-m cells from a set of points P

1. Figure out a rectangle that contains P (e.g. $\left.X_{\text {min }}, X_{\text {max }}, y_{\text {min }}, y_{\text {max }}\right)$
2. Allocate a 2d array of lists, all initially empty
3. For each point p in P : figure out which cell i, j contains p, and insert p in the list corresponding to g[i][j]
```
g = new (List<point2D*>**)[m];
for (int i=0; i<m; i++) {
    g[i] = new (List<point2D*>*) [m];
    for (int j=0; j<m; j++) {
        g[i][j] = new List<point2D*>;
    }
}
```

for each point p

$$
\begin{aligned}
& j=\left(p . x-x_{\text {min }}\right) / c e l l \text { size_x; } \\
& i=\left(y_{\text {max }}-p . y / c e l l s i z e _y ;\right. \\
& g[i][j]->i n s e r t(\& p) ;
\end{aligned}
$$

How do we answer range searches with a grid?

How do we answer range searches with a grid?

How do we answer range searches with a grid?

Analysis

- How long does a range query take?
- How many points in a cell?
- How do the points look like for the worst-case to be good?
- How to chose m?

The grid method

- + Grids perform well if points are uniformly distributed
- + Grids can be used as heuristic for many other problems besides range searching (e.g. closest pair, neighbor queries)
- - No worst case guarantees

- + simple to implement

2d search trees
 3d search trees
 4d search trees

 k-dimensional search trees

 k-dimensional search trees}
kd trees

a space decomposition: left tree represents all values <=16; right tree represents all values >16; and so on

1D binary search tree

- to search for a value, find the region of space where it would be if it were in the input

2d binary search trees

- The idea: A binary tree which recursively subdivides the plane by vertical and horizontal cut lines
- Vertical and horizontal lines alternate
- Cut lines are chosen to split the points in two (==> logarithmic height)

2d binary search trees

2d binary search trees

split points in two halves with a vertical line

2d binary search trees

split each side into half with a horizontal line

2d binary search trees

2d binary search trees

How to find a line that splits the points in half?

2d binary search trees

```
How to find a line that splits the points in half?
```


Variants:

- Chose the cut line so that it goes through the median point, and store the median in the internal node.
- Choose the cut line so that it falls in between the points. Internal nodes store lines, and points are only in leaves.
- Choose the cut line so it goes through the median point. Internal nodes store lines, and points are only in leaves.
- if n is even, assign the median to the e.g. smaller (left/below) one, consistently

This is standard and simplifies the details

Let's see what this means

2d binary search trees

- p1
p2

2d binary search trees

split with vertical line through x-median

2d binary search trees

2d binary search trees

right of I1: p3 => leaf

2d binary search trees

A bigger example

A bigger example

split with vertical line through x-median median goes to the left side

A bigger example

split each side with horizontal line through y-median median goes to the left side

A bigger example

A bigger example

A bigger example

2d binary search trees

Analysis

1.How to build it and how fast?
2. How much space does it take?
3.How to answer range queries and how fast?

2d binary search trees construction

Algorithm BuildKdTree (P, depth)

1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4.
5.
6.
7.
8.
9.

then Split P with a vertical line ℓ through the median x-coordinate into P_{1} (left of or on ℓ) and P_{2} (right of ℓ)
else Split P with a horizontal line ℓ through the median y-coordinate into P_{1} (below or on ℓ) and P_{2} (above ℓ)
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$
$v_{\text {right }} \leftarrow \operatorname{BuildKdTreE}\left(P_{2}\right.$, depth +1$)$
Create a node v storing ℓ, make $v_{\text {left }}$ the left child of v, and make $v_{\text {right }}$ the right child of v. return v

2d binary search trees construction

Algorithm BuildKdTree(P,depth)

1. if P contains only one point
2. then return a leaf storing this point
3. else if depth is even
4.
5.
6.
7.
8.
9.

then Split P with a vertical line ℓ through the median x-coordinate into P_{1} (left of or on ℓ) and P_{2} (right of ℓ)
else Split P with a horizontal line ℓ through the median y-coordinate into P_{1} (below or on ℓ) and P_{2} (above ℓ)
$v_{\text {left }} \leftarrow \operatorname{BuildKdTree}\left(P_{1}\right.$, depth +1$)$
$v_{\text {right }} \leftarrow \operatorname{BuildKdTree}\left(P_{2}\right.$, depth +1$)$ Create a node v storing ℓ, make $v_{\text {left }}$ the left child of v, and make $v_{\text {right }}$ the right child of v. return v

2d binary search trees construction

1. How to build it and how fast?

- Let $T(n)$ be the time needed to build a $2 d$ tree of n points
- Then

$$
T(n)=2 T(n / 2)+O(n)
$$

- This solves to $\mathbf{O}(\mathbf{n} \boldsymbol{\operatorname { l g }} \mathbf{n})$
- Practical notes
- The $O(n)$ median finding algorithm is not practical. Either do a randomized median finding (QuickSelect); or
- Better: pre-sort P on x - and y-coord and pass them along as argument, and maintain the sorted sets through recursion

$$
\begin{aligned}
& \text { P1-sorted-by-x, }^{P_{1} \text {-sorted-by-y }} \\
& \text { P2-sorted-by-x, }^{2} P_{2} \text {-sorted-by-y }
\end{aligned}
$$

2d binary search trees

2. How much space does it take?

2d binary search trees

2. How much space does it take?
$O(n)$

2d binary search trees

3. How to answer range queries?

Let's work through an example to get the intuition.

Range queries

We'll use that:
A 2d-tree defines a hierarchical partition of the space, where each node in the tree represents a region of space.

Let's see what this means..

The region of a node
whole plane

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

Each node in the tree corresponds to a region in the plane.

The region of a node

The region of a node

The region of a node

Each node in the tree corresponds to a region in the plane.
all points in tree(v) are in region(v)

We'll use this insight to answer range queries

Range queries on 2d-binary-search-trees

Let's bring in the space partition defined by the tree

We are at the root node, looking at the two children. To which child should send the query to?

Can left child contain points in the range?
Can right child contain points in the range?

Range queries: general idea

Range queries: general idea

Case 1:range intersects both children

Case 2

Case 2: range intersects only one child

Range queries: general idea

Case 2: range intersects only one child

Range queries: general idea

Case 3: child completely contained in range

Algorithm $\operatorname{SearchKdTreE}(v, R)$
Input. The root of (a subtree of) a kd-tree, and a range R
Output. All points at leaves below v that lie in the range.

1. if v is a leaf
2. then Report the point stored at v if it lies in R
3. else if region $(l c(v))$ is fully contained in R then ReportSubtree $(l c(v)$) else if region $(l c(v))$ intersects R then $\operatorname{SearchKdTree}(l c(v), R)$
4.
5.
6.
7.

if $\operatorname{region}(r c(v))$ is fully contained in R then ReportSubtree $(r c(v)$) else if region $(r c(v))$ intersects R then $\operatorname{SearchKdTree}(r c(v), R)$

How long does a range query take?

To analyze the time to answer a range query we'll look at the nodes visited in the tree

Here a standard analysis does not work..
If at any node we would visit one child $\Rightarrow \mathrm{O}(\lg n)$
If at any node we would visit both children => $O(n)$

Here we are in between
We visit the children intersected by the query range, which can be one or both

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree
Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

To analyze the time to answer a range query we'll look at the nodes visited in the tree Which nodes are visited in this tree when answering the query?

nodes never visited by the query
visited by the query, but unclear if they lead to output
visited by the query, whole subtree is output

nodes never visited by the query
visited by the query, but unclear if they lead to output
visited by the query, whole subtree is output

Consider region(node) and how it intersects range R

Time to answer range query $=\mathrm{O}$ (nb.black + nb.grey nodes $)$

How many black nodes?

Observation: Each black leaf contain a point that's reported $=>k$ leaves
Can be shown that the nb. of internal black nodes is k - 1

How many black nodes?

Observation: Each black leaf contain a point that's reported $=>k$ leaves

Can be shown that the nb. of internal black nodes is $k-1$

How many grey nodes?

region(v) intersects R, but region(v) not contained in R

How many grey nodes?

region(v) intersects R, but region(v) not contained in R

How many nodes are such that the boundary of their region intersects the boundary of the range?

How many grey nodes?

region(v) intersects R, but region(v) not contained in R

How many nodes are such that the boundary of their region intersects the boundary of the range?

Simplified problem:
We'll count the number of nodes whose region intersects a vertical line I.

Number of nodes v such that region(v) intersects a vertical line I ?

We'll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line I?
We'll think recursively, starting at the root:

- depth=0: region(root) intersects I
$+1$

Number of nodes v such that region(v) intersects a vertical line I?

We'll think recursively, starting at the root:

- depth=1: only one of $\{$ left, right $\}$ child intersects I +1

Number of nodes v such that region(v) intersects a vertical line I ?

We'll think recursively, starting at the root:

- depth=2: both $\{l e f t$, right $\}$ child intersect I
recurse

- Let $G(n)=n b$. of nodes in a kdtree of n points whose regions interest a vertical line I.
- Then $G(n)=2+2 G(n / 4)$, and $G(1)=1$

- This solves to $G(n)=O(\sqrt{n})$

Result: Any vertical or horizontal line I stabs $O(\sqrt{n})$ regions in the tree.

What we got so far:

- The number of grey nodes if the query were a vertical line is $O(\sqrt{n})$
- The same is true if it were a horizontal line
-How about a query rectangle?
- The nb. grey nodes for a query rectangle is at most the nb. grey nodes for two vertical and two horizontal lines, so it is at most $4 \times O(\sqrt{n})=O(\sqrt{n})$

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf
- Theorem: A set of n points in the plane can be preprocessed in $O(n \lg n)$ time into a data structure of $O(n)$ size so that any 2D range query can be answered in $O(\sqrt{n}+k)$ time, where k is the nb. points reported.
kd-tree (2d-tree)
kd-tree in higher dimensions

kd-tree in 3D: 3d-tree

- A 3D kd-tree alternates splits on x-, y - and z-dimensions
- A 3D range query is a cube
- Construction: The construction of a 2D kd-tree extends to 3D
- Answering range queries: Exactly the same as in 2D
- Analysis:

Let $G_{3}(n)$ be the number of grey nodes for a query with an axes-parallel plane in a 3D kd-tree

$$
\begin{aligned}
& G_{3}(1)=1 \\
& G_{3}(n)=4 \cdot G_{3}(n / 8)+O(1)
\end{aligned}
$$

Higher dimensions

Theorem: A set of n points in d-space can be preprocessed in $O(n \log n)$ time into a data structure of $O(n)$ size so that any d-dimensional range query can be answered in $O\left(n^{1-1 / d}+k\right)$ time, where k is the number of answers reported

