
https://abstrusegoose.com/249

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

Geometric range searching
and

space partition structures

Techniques
• divide-and-conquer
• incremental
• plane sweep
• space decomposition
• ..

“Global” problems
• closest pair
• convex hull
• intersections
• …

Today

Geometric search problems
• range searching
• nearest neighbor
• k-nearest neighbor
• find all roads within 1km of

current location
• ..

Where we are

1D Range searching

Given a set of n points on the real line, preprocess them into a data structure to
support fast range queries.

1D

Given a set of points, preprocess them into a data structure to support fast
range queries.

2D Range searching

Given a set of points, preprocess them into a data structure to support fast
range queries.

2D Range searching

Given a set of points, preprocess them into a data structure to support fast
range queries.

2D Range searching

Given a set of points, preprocess them into a data structure to support fast
range queries.

2D Range searching

Arise in settings that are not geometrical.

Database of stars. A star = (brightness, temperature,……)

Why?

brightness

temperature

Find all stars with brightness
and temperature within a given
interval

Why?

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Database of employees. An employee = (age, salary,……)

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Why?

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Range searching in 2D

How?
The naive approach:

• No data structure: traverse and check in O(n)

• Note: good when k is large

We’d like to do better.

What sort of bounds can we expect?

• n: size of the input (number of segments)

• k: size of output (number of points inside range)

Points are static or dynamic?

We’ll assume static (it’s hard enough)

The naive approach:

• No data structure: traverse and check in O(n)

• Analysis: O(n)

• Note: good when k is large

Range searching in 2D: How?

We’d like to do better.

What sort of bounds can we expect?

• n: size of the input (number of points)

• k: size of output (number of points inside range)

Points are static or dynamic?

We’ll assume static (it’s hard enough)

1D range searching

1D Range searching

Given a set of n points on the real line, preprocess them into a data structure to
support fast range queries.

find all values in [2,15]

2 15

How do we solve this and how fast?

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 29RangeQuery([2,29])

1D Range searching

Example
• Input: values 1 through 30, in arbitrary order
• Range query: find all values in [2,29]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 29RangeQuery([2,29])

1D Range searching

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2 29
The k points in the range are in O(lg n) subtrees

1D Range searching

• A set of n points (1D) can be pre-processed into a BBST such that:
• Build: O(n lg n)
• Space: O(n)
• Range queries: O(lg n +k)
• Dynamic: points can be inserted/deleted in O(lg n)

1D Results

• A set of n 2d-points can be pre-processed into a structure such that:
• Build: O(n lg n)
• Space: O(n)
• Range queries: O(lg2 n + k)

2D

These bounds would be nice

• A set of n points (1D) can be pre-processed into a BBST such that:
• Build: O(n lg n)
• Space: O(n)
• Range queries: O(lg n +k)
• Dynamic: points can be inserted/deleted in O(lg n)

But how?

1D Results

How could we use 1D structure for 2D?

• Find all points with the x-coordinates in the correct range [x1, x2]

x1 x2

Could it be as simple as ..
Denote query [x1, x2] x [y1, y2]

• Find all points with the x-coordinates in the correct range [x1, x2]
• Out of these points, find all points with the y-coord in the correct range [y1, y2]

x1 x2

Could it be as simple as ..
Denote query [x1, x2] x [y1, y2]

• Find all points with the x-coordinates in the correct range [x1, x2]
• Out of these points, find all points with the y-coord in the correct range [y1, y2]

x1 x2

y2

y1

Could it be as simple as ..
Denote query [x1, x2] x [y1, y2]

Does this work?

How fast is it?
Come up with a worst case scenario

Space decomposition methods

We’ll partition the space, store it in a data structure and use it to speed up searching

The simplest space decomposition is a grid

The grid method

class Grid {

double x1, x2, y1, y2; // the bounding box of the grid

int m; // number of cells in the grid (m-by-m)

double cellsize_x, cellsize_y; // size of a grid cell

List<point2D*> ***g;

Grid (Point p[], int n, int m);

List<Point2D*>* rangeQuery(double x1, x2, y1, y2);

….

};

For example…

//2D array of list*; g[i][j] contains the pointer
//to the list of points that lie in cell [i][j]

• Creating a grid of m-by-m cells from a set of points P

1. Figure out a rectangle that contains P (e.g. xmin, xmax, ymin,ymax)

2. Allocate a 2d array of lists, all initially empty

3. For each point p in P: figure out which cell i, j contains p, and insert p in
the list corresponding to g[i][j]

The grid method

• Creating a grid of m-by-m cells from a set of points P

1. Figure out a rectangle that contains P (e.g. xmin, xmax, ymin,ymax)

2. Allocate a 2d array of lists, all initially empty

3. For each point p in P: figure out which cell i, j contains p, and insert p in
the list corresponding to g[i][j]

The grid method

g = new (List<point2D*>**)[m];

for (int i=0; i<m; i++) {

g[i] = new (List<point2D*>*) [m];

for (int j=0; j<m; j++) {

g[i][j] = new List<point2D*>;

}

}

j = (p.x - xmin)/cellsize_x;

i = (ymax - p.y/cellsize_y;

g[i][j]->insert(&p);

for each point p

x1 x2

y1

y2

How do we answer range searches with a grid?

x1 x2

y1

y2

How do we answer range searches with a grid?

x1 x2

y1

y2

How do we answer range searches with a grid?

• How long does a range query
take ?

• How many points in a cell?
• How do the points look like for the

worst-case to be good?
• How to chose m?

Analysis

• + Grids perform well if points are uniformly distributed

• + Grids can be used as heuristic for many other problems besides range

searching (e.g. closest pair, neighbor queries)

• - No worst case guarantees

• + simple to implement

The grid method

We’ve seen this!

kd trees

2d search trees
3d search trees
4d search trees

…
k-dimensional search trees

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1D binary search tree

a space decomposition: left tree represents all values <=16; right tree represents
all values >16; and so on

168 244 12

• to search for a value, find the region of space where it would be if it were in the input

1D binary search tree

2d binary search trees

• The idea: A binary tree which recursively subdivides the plane by vertical and

horizontal cut lines

• Vertical and horizontal lines alternate

• Cut lines are chosen to split the points in two (==> logarithmic height)

2d binary search trees

2d binary search trees
split points in two halves with a vertical line

2d binary search trees
split each side into half with a horizontal line

2d binary search trees
repeat

2d binary search trees
How to find a line that splits the points in half?

2d binary search trees

Variants:

• Chose the cut line so that it goes through the median point, and store the
median in the internal node.

• Choose the cut line so that it falls in between the points. Internal nodes store
lines, and points are only in leaves.

• Choose the cut line so it goes through the median point. Internal nodes store
lines, and points are only in leaves.

• if n is even, assign the median to the e.g. smaller (left/below) one,
consistently

How to find a line that splits the points in half?

This is standard and simplifies the details

Let’s see what this means

2d binary search trees

p1

p2

p3

2d binary search trees
split with vertical line through x-median

p1

p2

p3

l1

l1

include median in left child

2d binary search trees
split with vertical line through x-median

p1

p2

p3

l1

l1

include median in left child

right of l1: { p3 }left_or_on l1: { p1, p2 }

2d binary search trees

p1

p2

p3

l1

l1

p3

right of l1: p3 => leaf

right of l1: { p3 }left_or_on l1: { p1, p2 }

2d binary search trees

p1

p2

p3

l1

l1

p3

left_on l1: p1,p2 => recurse

left_or_on l1: { p1, p2 }

2d binary search trees
split with horizontal line through y-median

p1

p2

p3

l1

l1

include median in left child

l2

l2 p3

2d binary search trees

p1

p2

p3

l1

l1

below_or_on l2: { p2 }

l2

l2 p3

above l2: { p1 }

split with horizontal line through y-median
include median in left child

2d binary search trees

p1

p2

p3

l1

l2

l1

l2 p3

p2 p1

A bigger example

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

split with vertical line through x-median
median goes to the left side

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

A bigger example

split each side with horizontal line through y-median

p1

p2

p3

median goes to the left side

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

A bigger example

repeat

p1

p2

p3

p4

p5

p6

p7

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

A bigger example

repeat

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l13

A bigger example

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4

l5

l6

l7

l8

l9

l10

l11

l12

l13

A bigger example

Draw the 2d-tree!

Analysis

1.How to build it and how fast?

2.How much space does it take?

3.How to answer range queries and how fast?

2d binary search trees

2d binary search trees construction

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

2d binary search trees construction

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Analysis?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

1. How to build it and how fast?

• Let T(n) be the time needed to build a 2d tree of n points

• Then

T(n) = 2T(n/2) + O(n)

• This solves to O(n lg n)

• Practical notes

• The O(n) median finding algorithm is not practical. Either do a randomized median
finding (QuickSelect); or

• Better: pre-sort P on x- and y-coord and pass them along as argument, and maintain
the sorted sets through recursion

 P1-sorted-by-x, P1-sorted-by-y

 P2-sorted-by-x, P2-sorted-by-y

2d binary search trees construction

2. How much space does it take?

2d binary search trees

2d binary search trees

2. How much space does it take?

O(n)

3. How to answer range queries?

 Let’s work through an example to get the intuition.

2d binary search trees

We’ll use that:

A 2d-tree defines a hierarchical partition of the space, where each node in the tree
represents a region of space.

Let’s see what this means..

Range queries

Each node in the tree corresponds to a region in the plane.

whole planeThe region of a node

l1

l1

Each node in the tree corresponds to a region in the plane.

right of l1

all leaves are right of l1

The region of a node

l1

l1

Each node in the tree corresponds to a region in the plane.

left_on l1

all leaves are left_on l1

right of l1

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

left_on l1 right of l1

below_on l2 above l2

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

left_on l1 right of l1

below_on l2 above l2

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

left_on l1 right of l1

below_on l2 above l2

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

l3

l3

left_on l1 right of l1

below_on l2 above l2

left_on l3 right of l3

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

l3

whole plane

l3

left_on l1 right of l1

below_on l2 above l2

left_on l3 right of l3

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

l3

l3

left_on l1 right of l1

below_on l2 above l2

left_on l3 right of l3

The region of a node

l1

l1

l2

l2

Each node in the tree corresponds to a region in the plane.

l3

l4

l3

l4

below l4 above l4

left_on l1 right of l1

below_on l2 above l2

left_on l3 right of l3

The region of a node

l1

l1

l2

l2

l3

l4

l3

l4

below l4 above l4

left_on l1 right of l1

below_on l2 above l2

left_on l3 right of l3

The region of a node

l1

l1

l2

l2

l3

l4

l3

l4

below l4 above l4

left_on l1 right of l1

below_on l2 above l2

left_on l3 right of l3

The region of a node

l1

l2

l3

l4region(v)

v

l1

l2

l3

l4

all points in tree(v) are in region(v)

Each node in the tree corresponds to a
region in the plane.

The region of a node

We’ll use this insight to answer range queries

Range queries on 2d-binary-search-trees

p1

p2

p3

l1

l2

l1

l2 p3

p2 p1

Let’s bring in the space partition defined by the tree

region(v1)

p1

p2

p3

l1

l2

p3

p2 p1

region(v1)

We are at the root node, looking at the
two children. To which child should send

the query to?

Can left child contain points in the range?
Can right child contain points in the range?

v

all points in tree(v) are in region(v)

region(v)

Range queries: general idea

v

all points in tree(v) are in region(v)

region(v)

Range queries: general idea

region(left(v))

v

region(left(v))

Case 1:range intersects both children

Case 2

region(left(v))

v

region(left(v))

Case 2: range intersects only one child

Range queries: general idea

region(left(v))

v

region(left(v))

Case 2: range intersects only one child

Range queries: general idea

region(left(v))

v

region(left(v))

Case 3: child completely contained in range

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

How long does a range query take?

To analyze the time to answer a range query we’ll look at the nodes visited in
the tree

If at any node we would visit one child => O(lg n)

If at any node we would visit both children => O(n)

Here a standard analysis does not work..

Here we are in between
We visit the children intersected by the query range, which can
be one or both

To analyze the time to answer a range query we’ll look at the nodes visited in the tree when answering a query

Which nodes are visited in this tree when answering the query?

p1

p2

p3

p4 p6

p5
p7

p8

p9

p10

p11

p12

p13
p14

p15

l1

l2

l3

l4 l5

l6

l7

l8

l9

l10

l11

l12

l13

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

To analyze the time to answer a range query we’ll look at the nodes visited in the tree

Which nodes are visited in this tree when answering the query?

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• nodes never visited by the query
• visited by the query, but unclear if they lead to output
• visited by the query, whole subtree is output

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• nodes never visited by the query
• visited by the query, but unclear if they lead to output
• visited by the query, whole subtree is output

Consider region(node) and how it intersects range R

• nodes never visited by the query
• visited by the query, but unclear if they lead to output
• visited by the query, whole subtree is output

Consider region(node) and how it intersects range R

R does not intersect region(v)

R intersects region(v), but region(v) not contained in R

region(v) is contained in R

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Time to answer range query = O(nb.black + nb.grey nodes)

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

How many black nodes?

Observation: Each black leaf contain a point that’s reported => k leaves

Can be shown that the nb. of internal black nodes is k-1

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

Therefore, time to answer range query = O(k) + O(nb. grey nodes)

How many black nodes?

Observation: Each black leaf contain a point that’s reported => k leaves

Can be shown that the nb. of internal black nodes is k-1

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

How many grey nodes?

region(v) intersects R, but region(v) not contained in R

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

How many grey nodes?

region(v) intersects R, but region(v) not contained in R

How many nodes are such that the boundary of their region intersects the
boundary of the range?

How many nodes are such that the boundary of their region intersects the
boundary of the range?

How many grey nodes?

Simplified problem:

We’ll count the number of nodes whose region intersects a vertical line l.

region(v) intersects R, but region(v) not contained in R

We’ll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line l?

• depth=0: region(root) intersects l

We’ll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line l?

+1

• depth=1: only one of {left, right} child intersects l

We’ll think recursively, starting at the root:

Number of nodes v such that region(v) intersects a vertical line l?

+1

We’ll think recursively, starting at the root:

• depth=2: both {left, right} child intersect l

Number of nodes v such that region(v) intersects a vertical line l?

recurse

• Let G(n) = nb. of nodes in a kdtree of n points whose regions interest a vertical line l.

• Then , and

• This solves to

G(n) = 2 + 2G(n /4) G(1) = 1

G(n) = O(n)

Result: Any vertical or horizontal line l stabs regions in the tree.O(n)

What we got so far:

• The number of grey nodes if the query were a vertical line is

• The same is true if it were a horizontal line

• How about a query rectangle?

O(n)

screenshot from Mark van Kreveld slides at http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• The nb. grey nodes for a query rectangle is at most the nb. grey nodes for
two vertical and two horizontal lines, so it is at most 4 × O(n) = O(n)

http://www.cs.uu.nl/docs/vakken/ga/slides5a.pdf

• Theorem: A set of n points in the plane can be preprocessed in
time into a data structure of size so that any 2D range query can be

answered in time, where is the nb. points reported.

O(n lg n)
O(n)

O(n + k) k

kd-tree (2d-tree)

kd-tree in higher dimensions

• A 3D kd-tree alternates splits on x-, y- and z-dimensions

• A 3D range query is a cube

• Construction: The construction of a 2D kd-tree extends to 3D

• Answering range queries: Exactly the same as in 2D

• Analysis:

kd-tree in 3D: 3d-tree

Higher dimensions

