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Line segment intersection

e The problem (what)
e Applications (why)
e Algorithms (how)

e A special case: Orthogonal line segments



Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.
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Line segment intersection:

Applications



Applications

Motion planning and collision detection in autonomous systems/robotics




Applications

Geographic data: River networks, road networks, railways, ..
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Applications

Geographic data: River networks, road networks, railways, ..
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Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/qis2/lectures/L ecture?/fig9-30_raster_overlay.qif
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Applications

Segment data in GIS: river network, road networks, counties, etc
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Applications

Map overlay in GIS
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Computing line segment intersection:

Algorithms



Notation
Nalve e n: size of the input (number of segments)

e k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.



Notation

Naive e n: size of the input (number of segments)

e k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

To think:
« QGive upper and lower bounds for k, draw examples that achieve these bounds.

e Qive a straightforward algorithm that computes all intersections and analyze its
running time. Give scenarios when this algorithm is efficient/inefficient.

« What is your intuition of an upper bound for this problem? (how fast would you
hope to be able to solve it?)



A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.




A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

To think:
« (Come up with a straightforward algorithm and analyze its time

 (Can you do better?



detour: range searching



1D Range Searching

« Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

O



1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

P Is known aheaad
and
does not change

e |f P is static



1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

4

e |f P is static

e sort, then binary search for a and walk. O(lgn + K) per query



1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

< .

P b

o If Pis dynamic P changes by .
adding and

* use a BBST deleting values



1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52
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Balanced Binary Search Trees
- crash course -



Binary Search Trees (BST)

Operations

Insert
delete

search

successor, predecessor

)

traversals (in order, .

min, max



Balanced Binary Search Trees (BBST)

« Binary search trees + invariants that constrain the tree to be balanced
« h=0(gn)
 These invariants have to be maintained when inserting and deleting
e we can think of the tree as self-balancing
« BBST variants
* red-black trees
« AVL trees
e DB-trees

 (a,b)trees



Example: Red-Black trees

 Binary search tree, and
e Each node is Red or Black
e The children of a Red node must be Black

 The number of Black nodes on any path from the root to any node that
does not have two children must be the same

o0

e easier to conceptualize the tree as containing
explicit NULL leaves, all Black

« the number of Black nodes on any root-to-leaf path
must be the same



Example: Red-Black trees

e Theorem:

A Red-Black tree of n nodes has height Theta( Ig n).




Example: Red-Black trees

e Theorem:

e After an insertion or a deletion, the RB tree invariants can be maintained
in additional O(Ig n) time. This is done by performing rotations and
recoloring nodes on the path from the inserted/deleted node to the root.

o0




Binary Search Trees

Operations

Insert

delete

search

successor, predecessor
traversals (in order, ..)
min, max

range search (1D)

@
& & & W
5 @ & @ @




1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52
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1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52
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1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

51 53



1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

51 53



1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

NIL NIL

10 16




1D range searching with Binary Search Trees

* Range search (a,b):




1D range searching with Binary Search Trees

* Range search (a,b):

e Can be answered in O( Ilg n+k), where k = O(n) is the size of output
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Balanced Binary Search Trees
- end -



The line sweep technique




The line sweep technique

e et X be the set of x-coordinates of all segments: these are the “events”

Xstart Xend



The line sweep technique
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e et X be the set of x-coordinates of all segments: these are the “events”

Xstart Xend



The line sweep technique
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 Jraverse the events in order



The line sweep technique
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 Jraverse the events in order



The line sweep technique
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 Jraverse the events in order



The line sweep technique
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The line sweep technique
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When reach a start event: segment becomes active



The line sweep technique

— this IS now active

When reach a start event: segment becomes active



The line sweep technique

— active

B ® BB becomes active

When reach a start event: segment becomes active



The line sweep technique

1

both active

—h

When reach a start event: segment becomes active



The line sweep technique

e both active
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When reach a start event: segment becomes active



Let's see what happens when we reach an event

corresponding to a vertical segment



The line sweep technique
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active

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active

But, not all active segments intersect the vertical segment



The line sweep technique
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When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active

But, not all active segments intersect the vertical segment




The line sweep technique

we want all horizontal segments
whose y-value is inside this
Interval

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active

But, not all active segments intersect the vertical segment






Orthogonal line segment intersection

* et X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

‘ e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

_ ‘ e if x is end of horizontal segment (x, X', y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections
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Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments
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Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

—  if X is end of horizontal segment (x, X, y):

:—>
'

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections



Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

—  if X is end of horizontal segment (x, X, y):

|

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections



Orthogonal line segment intersection
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Orthogonal line segment intersection
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Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

 if X is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections
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Orthogonal line segment intersection
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Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let

— X be the next event in X
e if X is start of horizontal segment (x, X', y):
q
insert segment (x,x,y) in AS
. — 1 « if x is end of horizontal segment (x, X', y):
e

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
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Orthogonal line segment intersection

— » Let X be the set of x-coordinates of all segments

: _ * Initialize AS = {}

: L e Sort X and traverse the events in sorted order; let

: X be the next event in X

; e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

o « if x is end of horizontal segment (x, X', y):
e

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections



Orthogonal line segment intersection

* et X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

e Jo think

« How to implement the AS? insert segment (x,X,y) in AS

. Analysis  if X is end of horizontal segment (x, X, y):
delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections









Line sweep




Line sweep algorithms

e Powerful, elegant, frequently used technique

e |Line can be horizontal or vertical or radial or ....

e TJraverse events in order and maintain an
T Active Structure (AS)

 AS contains objects that are “active”
(started but not ended) in other words they
are intersected by the current sweep line

e at some events, insert in AS

\ e at some events, delete from AS
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