Line segment intersection:

(1) Orthogonal line segment intersection

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Line segment intersection

e The problem (what)
e Applications (why)
e Algorithms (how)

e A special case: Orthogonal line segments

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

A
A =

Line segment intersection:

Applications

Applications

Motion planning and collision detection in autonomous systems/robotics

Applications

Geographic data: River networks, road networks, railways, ..

Craig 11 Wart Collins “Sterling

T ; o [K GreelepAY

1han '

ng Boglder P

‘ Aenver ::.:on ;
R aring

Rific) X Colenw SV *, Euston
“aY g y -
u \

Marylebot
P Paddingte
St Parxra

v Victoria
Waterloo

ARYA
‘
%4

&

Colorado
Springs

Applications

Geographic data: River networks, road networks, railways, ..

AN Va
. /

\\\) /
r'd

| : ~vryv) S P
\ / A..k / \"J‘t‘ ‘,."' ll' '|+_—— ~BRI3 g
\-‘// \\/:l-\’-t_)"f "'.'. 'II'I 'II o ; l:
."'I f - ':' 3

\'\.___ /
7
c'z --.'\.

Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/qis2/lectures/L ecture?/fig9-30_raster_overlay.qif

http://c

Applications

Segment data in GIS: river network, road networks, counties, etc

Ill 1 A
T
[1
&_{__I_I
|
—ngg
- d ’ e
O I_#T , ;) Anmmn)
LT T T Il C (TT11
4 | [TT1 I ‘
1 = SRazERZere \
g \’\— - 1‘ II
_L T | - LTL{II !
r I muly 11 L H
-] 1} [T dung=
f_L T Eammml
| HEN
1 me
. | | — — 1]
] [= 1
/ | 1 NEn gy
| 7)}\1_ g =i TT
o
|| 8 |
S
_‘*[[]
1.U [l % [\
~c | et :
_.-|

Applications

Map overlay in GIS

jeology.com

from:

4
Bfownsville

www.qgeo.hunter.cuny.edu/aierulli

. Interstate Highways
{3 US Highways

—
0 100 KM 100 Miles

Dallam

herm.

Hansford Lipscomb
B Ochiltre

Hartley | Moo

re
Hi

RobertsHemphil

Oldham | Potter |Carson | Gray Wheelel

Counties of Texas

Deaf Smith [Randall Donle i th
mstron,
Parmer| Castro |Swisher|Briscoe| Hall %hildre 8
Bailey| Lamb | Hale | Floyd |Motley|Cottle S _vilbarg
Foard Wichita
Clay.

ock Crosby |Dickens| King | Knox |Baylor | Archer

({achran Hockleylubb

lontague ook |Grayson| Fannin

Lamar Red Rive
Bowie

Del =
ranklin

i i itus)
oakun Terry | Lynn | Garza | Kent faskell Young Jack | Wise |Denton | Collin | Hopkins rtis Cass
hrockmorton " d
Rockwiall ain: Wood ypshu Marion
Gaines Dawson/Borden | Scurry | Fisher | Jones tephen: | Perker |Tarrant Pallas -
hackelford Palo Pinto aufmanyvan zapdt = Harrison
Hood i Smith
q ! Eastland ohnson| Ellis
Andrews | Martin (Howard|Mitchell| Nolan | Taylor Callahan| ErathSfne; enderson Rusk Panola
Hill Navarro
5 ! k manch
Ector |Midland| terlind C°Ke [Runnels| L Bosque P e erokel Shelby
olemary amilton i Freestdne Nacogdoches)
. Mills McLennanbimestol San Augdstine
Houston i
Coryell i Sabin
Reeves Reagan| .o, TomGreen o W Falls Leon ngelin:
VicCulloc (LY rinity,
San Saba Bell bertsohiadisol aspe
Schleicher |Menard Burnet Milam (- Polk |\ Tyler Newton
Crockett Mason | Llano Williamson' razos Sah Jacif
rime
Sutton | Kimble urlesort o
" ontgome ardin
Gillespie Travis Lee !
Terrell lanc ashingts rang
Presidio Edwards - Hays < Bastrop R B e
Val Verde Real endall T Fayette, usti Harris ambars
Brewster ea BeidlE® Comal
tadalup; olorado, ort Bend
. Bexar onzales | 4acq Galves
Kinney | Uvalde | Medina (o Wharton s 5 o
1007 > Dewitt)
acksoNMatagorda
| zavala Frio (Mascosa “(karnes ictoria
Giat Goliad
- McMullen . —~Cglho
DImmit |- sale ive Oa efugi
A oun
L" an Patricil
Jim|well
Webb Duval Nueces
Kleberg
im Ho Kenedy
ZE Brooks
Starr illac
Hidalgo ¥
Cameron'

is?/lectures/L ecture2/fig9-30_raster_overlay.qif

http://c

Computing line segment intersection:

Algorithms

Notation
Nalve e n: size of the input (number of segments)

e k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

Notation

Naive e n: size of the input (number of segments)

e k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

To think:
« QGive upper and lower bounds for k, draw examples that achieve these bounds.

e Qive a straightforward algorithm that computes all intersections and analyze its
running time. Give scenarios when this algorithm is efficient/inefficient.

« What is your intuition of an upper bound for this problem? (how fast would you
hope to be able to solve it?)

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

To think:
« (Come up with a straightforward algorithm and analyze its time

 (Can you do better?

detour: range searching

1D Range Searching

« Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

O

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

P Is known aheaad
and
does not change

e |f P is static

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

4

e |f P is static

e sort, then binary search for a and walk. O(lgn + K) per query

1D Range Searching

e Given a set of values P = {x1, X2, X3, ...Xn }
* Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

< .

P b

o If Pis dynamic P changes by .
adding and

* use a BBST deleting values

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

6
3 54

3/
& & & ®
o @ O 6@ @

51 53

Balanced Binary Search Trees
- crash course -

Binary Search Trees (BST)

Operations

Insert
delete

search

successor, predecessor

)

traversals (in order, .

min, max

Balanced Binary Search Trees (BBST)

« Binary search trees + invariants that constrain the tree to be balanced
« h=0(gn)
 These invariants have to be maintained when inserting and deleting
e we can think of the tree as self-balancing
« BBST variants
* red-black trees
« AVL trees
e DB-trees

 (a,b)trees

Example: Red-Black trees

 Binary search tree, and
e Each node is Red or Black
e The children of a Red node must be Black

 The number of Black nodes on any path from the root to any node that
does not have two children must be the same

o0

e easier to conceptualize the tree as containing
explicit NULL leaves, all Black

« the number of Black nodes on any root-to-leaf path
must be the same

Example: Red-Black trees

e Theorem:

A Red-Black tree of n nodes has height Theta(Ig n).

Example: Red-Black trees

e Theorem:

e After an insertion or a deletion, the RB tree invariants can be maintained
in additional O(Ig n) time. This is done by performing rotations and
recoloring nodes on the path from the inserted/deleted node to the root.

o0

Binary Search Trees

Operations

Insert

delete

search

successor, predecessor
traversals (in order, ..)
min, max

range search (1D)

@
& & & W
5 @ & @ @

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

6
3 54

3/
& & & ®
o @ O 6@ @

51 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

3

& & @& e

51 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

51 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

51 53

1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

NIL NIL

10 16

1D range searching with Binary Search Trees

* Range search (a,b):

1D range searching with Binary Search Trees

* Range search (a,b):

e Can be answered in O(Ilg n+k), where k = O(n) is the size of output

(L

4

{
W

Balanced Binary Search Trees
- end -

The line sweep technique

The line sweep technique

e et X be the set of x-coordinates of all segments: these are the “events”

Xstart Xend

The line sweep technique

® ®
® @
& @ ®
@ pe @
e o
o ® @
®
@
®
o & o o
o oo®*®
@ ® 89

e et X be the set of x-coordinates of all segments: these are the “events”

Xstart Xend

The line sweep technique

—

® @
: & @

: ® @ ®
@ é @
, @ @

o ® =
! =

: @

1 ’ ‘

! @ e o
: e oo™*®
L@ & B

 Jraverse the events in order

The line sweep technique

—>
® @
: ® @

1 & @ ¢
® @ @
' @ @

o ® =
- ®

: ®

' 5 ‘

: ® e o
. o eew®

' ® ® @@

 Jraverse the events in order

The line sweep technique

1

—h

---.‘----------i--------------

N

 Jraverse the events in order

The line sweep technique

—h

o
o0 ,
o @

N
@

 Jraverse the events in order

The line sweep technique

:—>
& &
& @
1 ® ® @
& @ &
e | @ And so on.
o ® @
@ ®
e € o o How to process events?
4 a3 @
2 & B B
& B B8

When reach a start event: segment becomes active

The line sweep technique

— this IS now active

When reach a start event: segment becomes active

The line sweep technique

— active

B ® BB becomes active

When reach a start event: segment becomes active

The line sweep technique

1

both active

—h

When reach a start event: segment becomes active

The line sweep technique

e both active
@ @
: @ @
1 & @ @
: ® .
3 P ® becomes active
. o @ &
! @
: @
1 ’ ‘
B e o
o oeo®®

N

When reach a start event: segment becomes active

Let's see what happens when we reach an event

corresponding to a vertical segment

The line sweep technique

—>
1
1
1
1
1
1
1
1

active

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active

But, not all active segments intersect the vertical segment

The line sweep technique

—>
1
1
1
1
1
1
1
1

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active

But, not all active segments intersect the vertical segment

The line sweep technique

we want all horizontal segments
whose y-value is inside this
Interval

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active

But, not all active segments intersect the vertical segment

Orthogonal line segment intersection

* et X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

‘ e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

_ ‘ e if x is end of horizontal segment (x, X', y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

* et X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

‘ e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

_ ‘ e if x is end of horizontal segment (x, X', y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

— if X is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

— if X is end of horizontal segment (x, X, y):

:—>
'

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

— if X is end of horizontal segment (x, X, y):

|

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— » Let X be the set of x-coordinates of all segments

: _ * Initialize AS = {}

: L e Sort X and traverse the events in sorted order; let

: X be the next event in X

; e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

: = « if x is end of horizontal segment (x, X', y):
e

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— » Let X be the set of x-coordinates of all segments

: _ * Initialize AS = {}

: L e Sort X and traverse the events in sorted order; let

: X be the next event in X

: e if X is start of horizontal segment (x, X', y):

F

insert segment (x,x,y) in AS

: = « if x is end of horizontal segment (x, X', y):
e

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

 if X is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

 if X is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

—> » Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

 if X is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

—> » Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

 if X is end of horizontal segment (x, X, y):

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

» Let X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let

— X be the next event in X
e if X is start of horizontal segment (x, X', y):
q
insert segment (x,x,y) in AS
. — 1 « if x is end of horizontal segment (x, X', y):
e

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

— » Let X be the set of x-coordinates of all segments

: _ * Initialize AS = {}

: L e Sort X and traverse the events in sorted order; let

: X be the next event in X

; e if X is start of horizontal segment (x, X', y):

insert segment (x,x,y) in AS

o « if x is end of horizontal segment (x, X', y):
e

delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Orthogonal line segment intersection

* et X be the set of x-coordinates of all segments

* Initialize AS = {}

 Sort X and traverse the events in sorted order; let
X be the next event in X

e if X is start of horizontal segment (x, X', y):

e Jo think

« How to implement the AS? insert segment (x,X,y) in AS

. Analysis if X is end of horizontal segment (x, X, y):
delete segment (x,x’,y) from AS

e if X corresponds to a vertical segment (y, y',X):

search AS for all segments with y-value in
given range [vy,y'] and report intersections

Line sweep

Line sweep algorithms

e Powerful, elegant, frequently used technique

e |Line can be horizontal or vertical or radial or

e TJraverse events in order and maintain an
T Active Structure (AS)

 AS contains objects that are “active”
(started but not ended) in other words they
are intersected by the current sweep line

e at some events, insert in AS

\ e at some events, delete from AS

3

.
.
3
.
.
‘Q
.

e at some events, query AS

.
*
*
.
.
.
.
.
.
.
.
.
.
.
3
.
.
3
.
.
3
*
.
*
*
*
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
3
.
.
3
.
’O
*

