Line segment intersection:

(I) Orthogonal line segment intersection

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Line segment intersection

- The problem (what)
- Applications (why)
- Algorithms (how)
- A special case: Orthogonal line segments
- Next time: General case: Bentley-Otman line sweep algorithm

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection:
Applications

Applications

Motion planning and collision detection in autonomous systems/robotics

Applications

Geographic data: River networks, road networks, railways, ..

Applications

Geographic data: River networks, road networks, railways, ..

Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

Applications

Segment data in GIS: river network, road networks, counties, etc

Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

Computing line segment intersection:

Algorithms

Notation

- n : size of the input (number of segments)
- k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

Naive

Notation

- n : size of the input (number of segments)
- k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

To think:

- Give upper and lower bounds for k , draw examples that achieve these bounds.
- Give a straightforward algorithm that computes all intersections and analyze its running time. Give scenarios when this algorithm is efficient/inefficient.
- What is your intuition of an upper bound for this problem? (how fast would you hope to be able to solve it?)

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise intersections.

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise intersections.

To think:

- Come up with a straightforward algorithm and analyze its time
- Can you do better?
detour: range searching

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, x 3, \ldots x_{n}\right\}$
- Pre-process it in order to answer
rangeSearch(a, b): return all elements in P in interval (a, b)

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, x 3, \ldots x_{n}\right\}$
- Pre-process it in order to answer

$$
\text { rangeSearch(a,b): return all elements in } P \text { in interval }(a, b)
$$

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, x 3, \ldots x_{n}\right\}$
- Pre-process it in order to answer

$$
\text { rangeSearch(a,b): return all elements in } P \text { in interval }(a, b)
$$

- If P is static

- sort, then binary search for a and walk. $O(\lg n+k)$ per query

1D Range Searching

- Given a set of values $P=\left\{x_{1}, x_{2}, x_{3}, \ldots x_{n}\right\}$
- Pre-process it in order to answer

$$
\text { rangeSearch(a,b): return all elements in } P \text { in interval }(a, b)
$$

- If P is dynamic
- use a BBST
P changes by adding and deleting values

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

Balanced Binary Search Trees - crash course -

Binary Search Trees (BST)

- Operations
- insert
- delete
- search
- successor, predecessor
- traversals (in order, ..)
- min, max

Balanced Binary Search Trees (BBST)

- Binary search trees + invariants that constrain the tree to be balanced
- $h=O(\lg n)$
- These invariants have to be maintained when inserting and deleting
- we can think of the tree as self-balancing
- BBST variants
- red-black trees
- AVL trees
- B-trees
- (a, b) trees
- ...

Example: Red-Black trees

- Binary search tree, and
- Each node is Red or Black
- The children of a Red node must be Black
- The number of Black nodes on any path from the root to any node that does not have two children must be the same

- easier to conceptualize the tree as containing explicit NULL leaves, all Black
- the number of Black nodes on any root-to-leaf path must be the same

Example: Red-Black trees

- Theorem:
- A Red-Black tree of n nodes has height Theta($\lg \mathrm{n})$.

Example: Red-Black trees

- Theorem:
- After an insertion or a deletion, the RB tree invariants can be maintained in additional $\mathrm{O}(\lg \mathrm{n})$ time. This is done by performing rotations and recoloring nodes on the path from the inserted/deleted node to the root.

Binary Search Trees

- Operations
- insert
- delete
- search
- successor, predecessor
- traversals (in order, ..)
- min, max
- range search (1D)

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

1D range searching with Binary Search Trees

- Range search (a,b):

1D range searching with Binary Search Trees

- Range search (a, b) :
- Can be answered in $\mathrm{O}(\lg \mathrm{n}+\mathrm{k})$, where $\mathrm{k}=\mathrm{O}(\mathrm{n})$ is the size of output

Balanced Binary Search Trees
 - end -

The line sweep technique

The line sweep technique

- Let X be the set of x-coordinates of all segments: these are the "events"

The line sweep technique

- Let X be the set of x-coordinates of all segments: these are the "events"

The line sweep technique

- Traverse the events in order

The line sweep technique

- Traverse the events in order

The line sweep technique

- Traverse the events in order

The line sweep technique

- Traverse the events in order

The line sweep technique

And so on.

How to process events?

When reach a start event: segment becomes active

The line sweep technique

When reach a start event: segment becomes active

The line sweep technique

When reach a start event: segment becomes active

The line sweep technique

When reach a start event: segment becomes active

The line sweep technique

When reach a start event: segment becomes active

Let's see what happens when we reach an event corresponding to a vertical segment

The line sweep technique

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active
But, not all active segments intersect the vertical segment

The line sweep technique

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active
But, not all active segments intersect the vertical segment

The line sweep technique

When reach an event corresponding to a vertical segment:
Claim: All horizontal segments that it intersects must be active
But, not all active segments intersect the vertical segment

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = \{\}
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = \{\}
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = \{\}
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = \{\}
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = \{\}
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x . We need those whose y is in $\left[\mathrm{y}, \mathrm{y}^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = \{\}
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in given range $\left[y, y^{\prime}\right]$ and report intersections

Orthogonal line segment intersection

- To think
- How to implement the AS?
- Analysis
- Let X be the set of x -coordinates of all segments //the events
- Initialize AS = $\}$
- Sort X and traverse the events in sorted order; let x be the next event in X
- if x is start of horizontal segment (x, x^{\prime}, y):
//segment becomes active
insert segment (x, x^{\prime}, y) in AS
- if x is end of horizontal segment (x, x^{\prime}, y):
//segment stops being active
delete segment (x, x^{\prime}, y) from AS
- if x corresponds to a vertical segment $\left(y, y^{\prime}, x\right)$:
//All active segments start before x and end after x. We need those whose y is in $\left[y, y^{\prime}\right]$
search AS for all segments with y-value in
given range $\left[y, y^{\prime}\right]$ and report intersections

Line sweep

Line sweep algorithms

- Powerful, elegant, frequently used technique
- Line can be horizontal or vertical or radial or

- Traverse events in order and maintain an Active Structure (AS)
- AS contains objects that are "active" (started but not ended) in other words they are intersected by the current sweep line
- at some events, insert in AS
- at some events, delete from AS
- at some events, query AS

