
Line segment intersection:

(I) Orthogonal line segment intersection

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

• The problem (what)

• Applications (why)

• Algorithms (how)

• A special case: Orthogonal line segments

• Next time: General case: Bentley-Otman line sweep algorithm

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

Line segment intersection

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Line segment intersection

+

Problem: Given a set of line segments in 2D, find all their pairwise intersections.

Applications

Line segment intersection:

Applications

Motion planning and collision detection in autonomous systems/robotics

R

Applications

Geographic data: River networks, road networks, railways, ..

Applications

Geographic data: River networks, road networks, railways, ..

Applications

Map overlay in GIS

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

http://c

Applications

Segment data in GIS: river network, road networks, counties, etc

Applications

from: www.geo.hunter.cuny.edu/aierulli/gis2/lectures/Lecture2/fig9-30_raster_overlay.gif

Map overlay in GIS

http://c

Algorithms

Computing line segment intersection:

Naive
Notation

• n: size of the input (number of segments)
• k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

Naive

To think:

• Give upper and lower bounds for k, draw examples that achieve these bounds.

• Give a straightforward algorithm that computes all intersections and analyze its
running time. Give scenarios when this algorithm is efficient/inefficient.

• What is your intuition of an upper bound for this problem? (how fast would you
hope to be able to solve it?)

Notation
• n: size of the input (number of segments)
• k: size of output (number of intersections)

Problem: Given a set of n line segments in 2D, find all their pairwise intersections.

A special case: Orthogonal line segment intersection

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

A special case: Orthogonal line segment intersection

To think:
• Come up with a straightforward algorithm and analyze its time
• Can you do better?

Problem: Given a set of orthogonal line segments in 2D, find all their pairwise
intersections.

detour: range searching

1D Range Searching

a b

• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

1D Range Searching

a b
• If P is static

• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

P is known ahead
and

does not change

1D Range Searching

a b

• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

• If P is static
• sort, then binary search for a and walk. O(lg n + k) per query

1D Range Searching

a b

• Given a set of values P = {x1, x2, x3, …xn }
• Pre-process it in order to answer

rangeSearch(a,b): return all elements in P in interval (a,b)

• If P is dynamic
• use a BBST

P changes by
adding and

deleting values

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

Balanced Binary Search Trees
- crash course -

Binary Search Trees (BST)

• Operations
• insert
• delete
• search
• successor, predecessor
• traversals (in order, ..)
• min, max

Balanced Binary Search Trees (BBST)

• Binary search trees + invariants that constrain the tree to be balanced

• h = O(lg n)

• These invariants have to be maintained when inserting and deleting

• we can think of the tree as self-balancing

• BBST variants

• red-black trees

• AVL trees

• B-trees

• (a,b) trees

• …

Example: Red-Black trees

• Binary search tree, and
• Each node is Red or Black
• The children of a Red node must be Black
• The number of Black nodes on any path from the root to any node that

does not have two children must be the same

• easier to conceptualize the tree as containing
explicit NULL leaves, all Black

• the number of Black nodes on any root-to-leaf path
must be the same

Example: Red-Black trees

• Theorem:
• A Red-Black tree of n nodes has height Theta(lg n).

Example: Red-Black trees

• Theorem:

• After an insertion or a deletion, the RB tree invariants can be maintained
in additional O(lg n) time. This is done by performing rotations and
recoloring nodes on the path from the inserted/deleted node to the root.

Binary Search Trees

• Operations
• insert
• delete
• search
• successor, predecessor
• traversals (in order, ..)
• min, max
• range search (1D)

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D range searching with Binary Search Trees

Example: range_search(21, 53): return 21, 34, 35, 46, 51, 52

21 53

1D Range Searching with Red-Black Trees

Example: range_search(10, 16): return 11, 13, 15

10 16

1D range searching with Binary Search Trees

• Range search (a,b):

a b

1D range searching with Binary Search Trees

• Range search (a,b):
• Can be answered in O(lg n+k), where k = O(n) is the size of output

a b

Balanced Binary Search Trees
- end -

The line sweep technique

• Let X be the set of x-coordinates of all segments: these are the “events”

xstart xend

x

The line sweep technique

• Let X be the set of x-coordinates of all segments: these are the “events”

xstart xend

x

The line sweep technique

• Traverse the events in order

The line sweep technique

• Traverse the events in order

The line sweep technique

1

• Traverse the events in order

The line sweep technique

1

2

• Traverse the events in order

The line sweep technique

1

2

3

The line sweep technique

And so on.
1

2

3

4

When reach a start event: segment becomes active

How to process events?

The line sweep technique

1

When reach a start event: segment becomes active

this is now active

The line sweep technique

1

2

When reach a start event: segment becomes active

active

becomes active

The line sweep technique

1

2

When reach a start event: segment becomes active

both active

The line sweep technique

1

2

3

When reach a start event: segment becomes active

both active

becomes active

Let’s see what happens when we reach an event
corresponding to a vertical segment

The line sweep technique

1

2

3

When reach an event corresponding to a vertical segment:

active

Claim: All horizontal segments that it intersects must be active

4

But, not all active segments intersect the vertical segment

The line sweep technique

1

2

3

When reach an event corresponding to a vertical segment:

Claim: All horizontal segments that it intersects must be active

4

But, not all active segments intersect the vertical segment

y

The line sweep technique

1

2

3

When reach an event corresponding to a vertical segment:

Claim: All horizontal segments that it intersects must be active

4

But, not all active segments intersect the vertical segment

y

we want all horizontal segments
whose y-value is inside this

interval

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

• To think
• How to implement the AS?
• Analysis

• Let X be the set of x-coordinates of all segments
//the events

• Initialize AS = {}
• Sort X and traverse the events in sorted order; let

x be the next event in X
• if x is start of horizontal segment (x, x’, y):

//segment becomes active

insert segment (x,x’,y) in AS
• if x is end of horizontal segment (x, x’, y):

//segment stops being active

delete segment (x,x’,y) from AS
• if x corresponds to a vertical segment (y, y’,x):

//All active segments start before x and end
after x. We need those whose y is in [y,y’]

search AS for all segments with y-value in
given range [y,y’] and report intersections

Orthogonal line segment intersection

a

b

c

d

e

f

Line sweep

• Traverse events in order and maintain an
Active Structure (AS)

• AS contains objects that are “active”
(started but not ended) in other words they
are intersected by the current sweep line

• at some events, insert in AS

• at some events, delete from AS

• at some events, query AS

Line sweep algorithms

• Powerful, elegant, frequently used technique
• Line can be horizontal or vertical or radial or ….

