
Line segment intersectiona

b
c

d

e

Computational Geometry [csci 3250]

Laura Toma

Bowdoin College

Last time we looked at a special case of line segment intersection

line sweep technique
solve the problem behind the line

insert delete

AS: segments in order of y

Result: The intersections of a set of n orthogonal segments in the plane can
be found in O(n lg n + k) time.

orthogonal segments

y

General line segment intersection

• How? we’ll extend line sweep

• We’ll get an overall bound of O(n lg n + k lg n)

• this improves on the naive O(n2) when k is small

• The algorithm was developed by Jon Bentley and Thomas Ottman in 1979

• Simple (in retrospect!), elegant and practical

• n: size of the input (number of segments)

• k: size of output (number of intersections)

Overview

The sweep

a

b
c

d

e

a

b
c

d

e

• Let X be the set of all x-coords of segments

The sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

this becomes active

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

this becomes active

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

this becomes active

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Traverse the events in X in order

The sweep

this becomes active

a

b
c

d

e

• At this moment 4 segments are active

• How do we detect intersections?

How could we have
detected this?

Let’s step back and remember the orthogonal case….

orthogonal segments

we ordered horizontal segments by y-values we can use above-below order

a

da below d

a above d

general segments

order flips at intersection point!

Key idea #1

a

b
c

d

e

• Use above-below order

• Order will flip at intersection point

Key idea #2

a

b
c

d

e

• Segments that intersect are consecutive in above-below order just before they intersect

Let’s start over..

Bentley-Ottmann sweep

a

b
c

d

e

• Let X be the set of all x-coords of segments

• Initialize AS = {}

• Traverse events in order

Bentley-Ottmann sweep

a

b
c

d

e

this event is start of segment a: insert a in AS

Bentley-Ottmann sweep

a

b
c

d

e

Bentley-Ottmann sweep

a

b
c

d

e

this event is start of segment d

insert d in AS: a < d

check if (d,a) intersect to the right of the line; they do; report point and
insert it in the list of future events

Bentley-Ottmann sweep

a

b
c

d

e

we found this when d becomes active
we insert it in event list

Bentley-Ottmann sweep

a

b
c

d

e

Bentley-Ottmann sweep

a

b
c

d

e

• this event is an intersection point of (a,d):

• flip a and d is AS: a is now above d (d < a)

Bentley-Ottmann sweep

a

b
c

d

e

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment c:

• insert c in AS; c is below d (c < d < a)

• check c with its above and below neighbors for intersection to the right of the

sweep line; this detects the intersection point of c and d; report it and insert it as
future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment c:

• insert c in AS; c is below d (c < d < a)

• check c with its above and below neighbors for intersection to the right of the

sweep line; this detects the intersection point of c and d; report it and insert it as
future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment b:

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment b:

• insert b in AS; c < d < b < a

• check b with its above and below neighbors for intersection to the right of the

sweep line; (d,b) don’t intersect; (b, a) don’t intersect

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment e:

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment e:

• insert e in AS: c < d < b < a < e

• check e with its above and below neighbors for intersection to the right of the

sweep line; this detects intersection point of (a,e); report it and insert it as future
event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is start of segment e:

• insert e in AS: c < d < b < a < e

• check e with its above and below neighbors for intersection to the right of the

sweep line; this detects intersection point of (a,e); report it and insert it as future
event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is intersection of (a,e):

• flip a and e: c < d < b < e < a

• check new neighbors (e,b) for intersection to the right of the sweep line; (e,b)

don’t intersect

Bentley-Ottmann sweep

a

b
c

d

e

• this event is intersection of (c,d):

• flip c and d: d < c < b < e < a

• check new neighbors (c,b) for intersection to the right of the sweep line; (c,b)

don’t intersect

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment b:

• delete b from AS: d < c < e < a

• check new neighbors (c,e) for intersection to the right of the sweep line; this

detects the intersection point of (c,e); report it and insert it as future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment b:

• delete b from AS: d < c < e < a

• check new neighbors (c,e) for intersection to the right of the sweep line; this

detects the intersection point of (c,e); report it and insert it as future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment b:

• delete b from AS: d < c < e < a

• check new neighbors (c,e) for intersection to the right of the sweep line; this

detects the intersection point of (c,e); report it and insert it as future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment a:

• delete a from AS: d < c < e

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment a:

• delete a from AS: d < c < e

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the intersection of (c,e):

• flip c,e in AS: d < e < c

• check new neighbors (d,e) for intersection to the right of the sweep line; this

detects the intersection of (d,e); report it and insert it as future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the intersection of (c,e):

• flip c,e in AS: d < e < c

• check new neighbors (d,e) for intersection to the right of the sweep line; this

detects the intersection of (d,e); report it and insert it as future event

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment c:

• delete c in AS: d < e

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is end of segment c:

• delete c in AS: d < e

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the intersection of (d,e):

• flip d,e in AS: e < d

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the end of d:

• delete d in AS: e

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the end of d:

• delete d in AS: e

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the end of e:

• delete e in AS:

• no new neighbors

Bentley-Ottmann sweep

a

b
c

d

e

• this event is the end of e:

• delete e in AS:

• no new neighbors

• Simplifying assumptions

• no vertical segments

• no two segments intersect at their endpoints

• no three (or more) segments have a common intersection

• all endpoints (of segments) and all intersection points have different x-

coordinates

• no segments overlap

• These assumptions are not realistic for real data..

• But, they don’t provide insight into the plane sweep technique, so we omit them

• Real data challenges

• dealing with degenerate cases

• dealing with finite precision arithmetic and precision problems

Bentley-Ottmann sweep

We’ll maintain the following invariants during the algorithm:

Bentley-Ottmann sweep

We’ll maintain the following invariants during the algorithm:

• Active structure AS:

• For any position of the sweep line SL, AS contains all active segments (ie

segments that start before SL and end after SL)

• AS is sorted by their y-coordinates of their intersection with SL

Bentley-Ottmann sweep

We’ll maintain the following invariants during the algorithm:

• Active structure AS:

• For any position of the sweep line SL, AS contains all active segments (ie

segments that start before SL and end after SL)

• AS is sorted by their y-coordinates of their intersection with SL

• Event list EL:

• For any position of SL, EL contains segment endpoints to the right of SL,

and also the intersections to the right of SL of active segments that were/
are neighbors in SL

• EL is sorted by x-coordinate

Bentley-Ottmann sweep

We’ll maintain the following invariants during the algorithm:

• Active structure AS:

• For any position of the sweep line SL, AS contains all active segments (ie

segments that start before SL and end after SL)

• AS is sorted by their y-coordinates of their intersection with SL

• Event list EL:

• For any position of SL, EL contains segment endpoints to the right of SL,

and also the intersections to the right of SL of active segments that were/
are neighbors in SL

• EL is sorted by x-coordinate

• For any position of the sweep line SL, all pairs of intersecting dead segments

have been reported.

Bentley-Ottmann sweep

Algorithm Bentley-Ottmann (S)

//S is a set of n line segments in the plane

• initialize AS= {}

• sort 2n endpoints of all segments in S by x-coord and store them in EventList

• while EventList not empty

• let e be the next event from EventList; delete it from EL

//sweep line moves to x=e.x

• if e is left endpoint of a segment l

//l becomes active

• insert l in AS in the right place

• check if l intersects with l->prev and l->succ in AS to the right of the sweep line; if they do,

insert their intersection point in the EventList

//optional: since l.prev and l.succ are not neighbors anymore, we check if they intersect and if
they do, delete that intersection point from the EventList

• if e is the right endpoint of a segment

• …

• if e is the intersection of two segments

• …

• end.

Questions

• AS

• What operations do we do on AS?

• What data structure should we use for AS?

• EL

• Note that we know a priori the 2n events corresponding to start and end-

points of segments, but EL is not static; the events corresponding to
intersection points are generated on the fly

• What operations do we do on EL?

• What data structure should we use for EL?

Bentley-Ottmann sweep

Running time

• AS

• What is the size of AS?

• O(n)

• How many operations?

• O(n+k)

• Overall time?

• O((n+k)lg n)

• EventList

• What is the size of EventList?

• O(n+k)

• How many operations?

• O(n+k)

• Overall time?

• O((n+k)lg n)

Bentley-Ottmann sweep

Running time

• AS

• What is the size of AS?

• O(n)

• How many operations?

• O(n+k)

• Overall time?

• O((n+k)lg n)

• EventList

• What is the size of EventList?

• O(n+k)

• How many operations?

• O(n+k)

• Overall time?

• O((n+k)lg n)

Bentley-Ottmann sweep

Bentley-Ottmann sweep runs in

O((n+k) lg n) time.

