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Convex Hulls

The problem:  Given a set P of points, compute their convex hull

2D 3D



Convex Hulls

3D convex hull = smallest convex polyhedron 
(polytope) that contains P

2D convex hull = smallest convex polygon 
(polytope) that contains P



2D 3D

polygon polyhedron



Polyhedron  

• region of space whose boundary consists of vertices, edges and (flat) faces, 
such that  faces intersect properly 

• two faces are either disjoint;  or  

• have a single vertex in common; or 

• have two vertices and the edge between them in common 



Polyhedra  

• Also, local topology must be proper

https://plus.maths.org/content/eulers-polyhedron-formula



v

The link of any vertex be is a simple, closet polygonal path.
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The link of any vertex be is a simple, closet polygonal path.



Polyhedra  

• Also: global topology must be proper: surface is connected, 
closed and bounded.  

• Holes are allowed, as long as they don’t disconnect  

• The nb of holes is called the genus of the surface 



Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.  

convex non-convex



Convexity

convex non-convex

A polyhedron P is convex if for any p, q in P, the segment pq lies entirely in P.  



convex polyhedron : polytop



digression start



Regular polygons in 2D

• A regular polygon has equal 
sides and angles



Regular polytops in 3D

• Regular polytop:  
• faces are congruent regular polygons 
• the number of faces incident to each vertex is the same (and equal angles)

Surprisingly, there exist only 5 regular polytops



digression end



Convex Hulls in 3D

3D convex hull = smallest convex polyhedron (polytope) that contains P



Convex Hulls in 3D

The  smallest convex polyhedron (polytope) that contains P



Properties of 2d hull

• 2d hull consists of all extreme edges and 
vertices 

• All internal angles are < 180 

• Walking counterclockwise—> left turns 

• Points on hull are sorted in radial order wrt a 
point inside 

• 3d hull consists of all faces, edges and 
vertices 

• All internal angles between faces are < 
180 

• Walking counterclockwise—> left turns 

• Points on CH are sorted in radial order wrt 
a point inside 

Properties of 3d hull



Faces, edges, vertices on the hull are extreme.

2D 3D



Computing the Hull

2D 3D

Naive O(n3)

Gift wrapping O(nh)

Graham scan O(n lg n)

Quickhull O(n lg n), O(n2)

Incremental O(n lg n)

Divide-and-
conquer O(n lg n)

does not extend..

Lower bound in 3D:  Ω(n lg n) Is this achievable?



Naive 3d hull



Algorithm idea:  
• For every triplet of points (pi,pj,pk):  

• check if plane defined by it is extreme  
• if it is, add it to the list of CH faces 

3d hull: Naive algorithm

• Sketch how to determine if a triplet is extreme  and analyze it  

is_extreme(point3d a, point3d b, point3d c,  vector<point3d> P)



Gift wrapping



Algorithm 
• find a face guaranteed to be on the CH  
• REPEAT  

• find an edge e of a face f that’s on the CH, and such that the face 
on the other side of e has not been found.  

• for all remaining points pi, find the angle of (e,pi) with f 
• find point pi with the minimal angle; add face (e,pi) to CH

3d hull: Gift wrapping

• Analysis: O(n x F), where F is the number of faces on CH



Angle between two planes (α, β, green) in a third plane (pink) which cuts the line of 
intersection at right angles

A dihedral angle is the angle between two intersecting planes. 



• To think 
• finding first face?  
• How to keep track of the hull?  we’ll need to store the connectivity (what 

faces are adjacent, for an edge which faces its adjacent to, etc) 
• How to keep track of the boundary of the hull (the edges that have only one 

face discovered)? 

3d hull: Gift wrapping

Algorithm 
• find a face guaranteed to be on the CH  
• REPEAT  

• find an edge e of a face f that’s on the CH, and such that the face 
on the other side of e has not been found.  

• for all remaining points pi, find the angle of (e,pi) with f 
• find point pi with the minimal angle; add face (e,pi) to CH



Gift wrapping in 3D

• YouTube  
• Video of CH in 3D   (by Lucas Benevides)

https://www.youtube.com/watch?v=4dBHgu9zNFg


From 2D to 3D

2D 3D

Naive O(n3) O(n4)

Gift wrapping O(nh) O(n x F)

Graham scan O(n lg n) does not 
extend to 3D

Quickhull O(n lg n), O(n2)

Incremental O(n lg n)

Divide-and-
conquer O(n lg n)



Incremental 3D hull



Incremental 3d hull

• sort points lexicographically  
• initialize hull H = {p1,p2,p3} 
• for i= 4 to n 

• //invariant: H represents the CH of p1..pi-1 
• add pi to H and update H to represent the  CH of p1..pi

2D 3D



Incremental 3d hull

3D

Imagine standing at p and looking towards the hull  

The faces that are visible are precisely those that need to be discarded 

The edges on the border of the visible region become the basis of the cone 

p



Incremental 3d hull

• sort points lexicographically  

• initialize H  for p1, p2, p3, p4 

• for each remaining point p in order  
• for each face f of H:  check if f is visible from p 
• if no faces are visible 

• discard p (p must be inside H) 
• else 

• find border edge of all visible faces  
• for each border edge e construct a face (e,p) and add to H 
• for each visible face f: delete f from H

We need a precise definition of visibility



p

a

b

c

p is right of (in front) abcps is left of (behind) abc

p

abc visible from pabc not visible from p

Terminology: Point in front/behind face



2 signedArea(a,b,c) = det
a.x    a.y   1 
b.x    b.y   1 
c.x    c.y   1

c

a

b

negative area 
(c right/in front of ab)

positive area 
(c left/behind ab)

c

2D



6 signedVolume(a,b,c,d) = det
a.x    a.y    a.z     1 
b.x    b.y    b.z    1 
c.x    c.y    c.z     1 
d.x    d.y    d.z    1

a

b

c
d

negative volume 
(d in front of face)

positive volume 
(p behind face)

3D



• Assume all faces oriented counterclockwise  so that their normals 
determined by the right-hand rule point towards the outside of P. 

is_visible(a,b,c,p):    return signedVolume(a,b,c,p) < 0

p

a

b

c

negative volume 
(p in front of face)

positive volume 
(p behind face)

p



Incremental 3d hull

3D

The visible faces are precisely those that need to be discarded 

The edges on the boundary of the visible region are the basis of the cone 



Incremental 3d hull

• Analysis:  

• (Like in 2D) We can start at the previous vertex,  find its neighboring faces, 
determine if they are visible, and continue.  For each face that we determine 
to be visible, that face will be deleted.  

• In 2D: a vertex on the hull is connected to precisely 2 edges. If the vertex is 
deleted later, deleting the edges can be “charged” to the vertex  

• IN 3D: All faces (e, p) added at step i are now connected to vertex p.   The 
number of faces incident to a vertex p is not constant and can be .  
Some or all of these faces may be deleted later. 

• Overall  in 3D running time adds up to O(n2) 

O(n)



3D hull  via divide & conquer



3d hull via divide & conquer

• divide points in two halves P1 and P2 
• recursively find CH(P1) and CH(P2) 
• merge 

• We’ll see that merging can be done in O(n) time ==> O( n lg n) algorithm 



Merging



Merging

The merged hull will add a “band” of faces between A and B

A
B



• Imagine rotating the plane around ab, until it touches the polytops A 
and B

Let   be a plane touching A in a and B in bπ

Rotate   around abπ



• Claim:   When we rotate  around ab, the first vertex hit  is a vertex c 

adjacent to a or b and vertex c has the smallest angle among all 

neighbors of a,b

π

Rotate   around abπ



Rotate   around abπ

one of these vertices

• Claim:   When we rotate  around ab, the first vertex hit  is a vertex c 

adjacent to a or b and vertex c has the smallest angle among all 

neighbors of a,b

π



• Once  hits c, a triangular face of the merged hull has been found π

Let   be a plane touching A in a and B in bπ

Rotate   around abπ

c

a

b



1.  Find a common tangent ab  

Merge

a

b



1.  Find a common tangent ab 

2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab).  

Merge

a

b
c



1.  Find a common tangent ab  

2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab).  

3.  Repeat from edge ac.  

Merge

a

b
c



Merge

a

b
c

d

1.  Find a common tangent ab  

2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab).  

3.  Repeat from edge ac.  



Merge

a

b
c

d
e

1.  Find a common tangent ab  

2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab).  

3.  Repeat from edge ac.  



Merge

a

b
c

d
e

1.  Find a common tangent ab  

2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab).  

3.  Repeat from edge ac.  



Merge

1.  Find a common tangent ab  

2.  Consider all neighbor vertices of a,b and find the vertex with smallest angle (wrt  
the plane through ab).  

3.  Repeat from edge ac.  

4.  Delete hidden faces  



The hidden faces

• Find the edges on the “boundary” of the cylinder  
• BFS or DFS faces “towards” the cylinder  
• All faces reached are inside 



3d hull: summary



3D hull summary

2D 3D

Naive O(n3) O(n4)

Gift wrapping O(nh) O(n x F)

Graham scan O(n lg n) does not 
extend to 3D

Quickhull O(n lg n), O(n2)

Incremental O(n lg n) O(n2)

Divide-and-
conquer O(n lg n) O(n lg n)



3d hull: Summary

• Of all algorithms that extend to 3D, divide-and-conquer is the only 

one that achieves optimal   

• But, difficult to implement  

• The slower algorithms (quickhull, incremental) preferred in practice 

O(n lg n)



Convex hull in higher dimensions 

• Surprisingly, have many applications !  

• e.g. computing triangulations for points in 3D can be 
constructed from convex hulls in 4D 

• Size of d-hull:  

• In 4D:    size is    

•   algorithm not  possible  

•   algorithms known 

Ω(n⌊d/2⌋)

Ω(n2)
O(n lg n)

O(n2)





Euler’s formula 

• Euler noticed a remarkable regularity in the number of vertices, 
edges and faces of a polyhedron (w/o holes). 

• Euler’s formula:  V - E + F = 2

• Proof idea:  

• flatten the polygon to a plane 

• prove the formula for a tree 

• prove for any planar graph by induction on E


