Convex hulls in 2D

The problem: Given a set P of n points in the plane, find their convex hull.

Properties of the convex hull

- A point is on the CH if and only of it is extreme (a point p is extreme if there exists a line l through it such that all other points are on or on one side of l).
- An edge is on the CH if and only of it is extreme (a line l is extreme if all points in P are on or on one side of it).
- A point p is not on the CH if and only if p is contained in the interior of a triangle formed by three other points of P.
- The points with minimum/maximum x-coordinate are on the CH .
- The points with minimum/maximum y-coordinate are on the CH .
- Walking counter-clockwise on the boundary of the CH you make only left turns.
- Consider a point p inside the CH . The points on the boundary of the CH are encountered in sorted radial order wrt p.

Algorithms

We discussed the following algorithms:

Brute force

Idea: Find all extreme edges

Algorithm BruteForce (input: points P)

- for all distinct pairs of points $\left(p_{i}, p_{j}\right)$:
- if edge $\left(p_{i}, p_{j}\right)$ is extreme, output it as CH edge

Questions:

- How do you check if an edge is extreme, and how fast?
- What is the overall running time of Algorithm BruteForce?

Gift wrapping

Idea: start from a point p guaranteed to be on the CH and find the edge $p q$ of the CH starting at p; repeat from q.

Algorithm GiftWrapping (input: points P)

- Let p_{0} be the point with smallest x-coordinate (if more than one, pick right-most)
- $p=p_{0}$
- repeat
for each point $q, q!=p$:
* compute counter-clockwise-angle of q wrt p
let p^{\prime} be the point with smallest such angle
//claim: edge (p, p^{\prime}) is on the CH because...
output (p, p^{\prime}) as CH edge
$p=p^{\prime}$
- until $p==p_{0}$

Questions:

1. Simulate GiftWrapping on a set of points and check that it works in degenerate cases.
2. What is the running time of Algorithm GiftWrapping? Express the running time as function of k, where k is the output size (in the case the size of the CH). This is called an outputsensitive bound and GiftWrapping's runnung time is output-sensitive.
3. How big/small can k be for a set of n points? Show examples that trigger best/worst case for GiftWrapping.
4. Discuss when GiftWrapping is a good choice.

QuickHull

Idea: Similar to Quicksort. Partition, then recurse.
Algorithm QuickHull (input: points P)

- Find left-most point a and right-most point b
- Partition P into P_{1} (points left of $a b$) and P_{2} (points right of $a b$)
- return $\operatorname{QuickHull}\left(a, b, P_{1}\right)+\operatorname{QuickHull}\left(b, a, P_{2}\right)$

QuickHull (a, b, P)
//invariant: P is a set of points all left of $a b$

- if P is empty: return emptyset
- for each point $p \in P$: compute its distance to $a b$
- let c be the point with max distance
- let $P_{1}=$ points to the left of $a c$
- let $P_{2}=$ points to the left of $c b$
- return QuickHull $\left(a, c, P_{1}\right)+\mathrm{c}+\operatorname{QuickHull}\left(c, b, P_{2}\right)$

Questions:

- Simulate QuickHull and check that it works in degenerate cases
- Write a recurrence for its running time.
- What is the best/worst case running time of QuickHull? Show examples.
- Argue that Quickhull's average complexity is $O(n)$ when points are uniformly distributed.

Graham scan

Idea: start from a point p interior to the hull. Order all points by their ccw angle wrt p. Traverse and maintain the CH of all traversed points.

Algorithm GrahamScan (input: points P)

- Find interior point p_{0} (instead of an interior point, can pick the lowest point)
- Sort all other points ccw around p_{0} and call them $p_{1}, p_{2}, \ldots p_{n-1}$ in this order.
- Initialize stack $S=\left(p_{2}, p_{1}\right)$
- for $\mathrm{i}=3$ to $\mathrm{n}-1$ do
- if p_{i} is left of $(\operatorname{second}(\mathrm{S}), \operatorname{first}(\mathrm{S})):$ push p_{i} on S
- else:
* repeat: pop S while p_{i} is right of (second(S), first(S)
* push p_{i} on S

Questions:

- Degenerate cases: Simulate the algorithm on some degenerate cases and check that it works (if not, fix it).
- Argue that once the points are sorted, the algorithm takes linear time.

What is the overall running time of Graham Scan? Is the algorithm output sensitive?

