
Planar convex hulls (II)

Computational Geometry [csci 3250] 
Laura Toma 

Bowdoin College



Properties of CH

• All edges of CH are extreme and all extreme edges of P are on the CH 
• All points of CH are extreme and all extreme points of P are on the CH 
• All internal angles are < 180 
• Walking counterclockwise—> left turns 
• Points on CH are sorted in radial order wrt a point inside 



Outline

• Last time: 
• Brute force  
• Gift wrapping  
• Quickhull  
• Graham scan  

• Next  
• Andrew’s monotone chain algorithm   
• Exercises  
• Lower bound  
• More algorithms 

• Incremental CH 
• Divide-and-conquer CH



Andrew’s Monotone Chain Algorithm (1979)

• Alternative to Graham’s scan 
• Idea: Find upper hull and lower hulls separately  
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Andrew’s Monotone Chain Algorithm (1979)
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• Goal:  find the CH of P1 
• Idea: Traverse points in (x,y) order (i.e. lexicographically)

and so on..



Andrew’s Monotone Chain Algorithm (1979)

• Alternative to Graham’s scan  
• Idea: Traverse points in (x,y) lexicographic order (instead of radial order) 
• Runs in sort + scan  
• Sorting lexicographically is faster than sorting radially  





Convex hull:  summary 

Can we do better?

Naive O(n3)

Gift wrapping O(nh) 1973

Graham scan O(n lg n) 1972

Andrew 
monotone 

chain
O(n lg n) 1979

Quickhull O(n2) 1977



Lower bound



What is a lower bound? 

• Given an algorithm A, its worst-case running time is the largest running time on 
any input of size n 

TA(n) = max |P|=n { T(n) | T(n) is the running time of algorithm A on input P}



What is a lower bound? 

Consider all possible CH algorithms A

 Take the overall smallest worst-case running time

• A  lower bound for CH:   What is the worst-case running time of the best 
possible CH algorithm?  

min A { TA(n) }

• Given an algorithm A, its worst-case running time is the largest running time on 
any input of size n 

TA(n) = max |P|=n { T(n) | T(n) is the running time of algorithm A on input P}



• Lower bounds depend on the machine model.  

• The standard model is the decision tree (comparison) model. 

• Sorting lower bound in the decision tree model is .Ω(n lg n)

What is a lower bound? 



How do we prove lower bounds? 

• Prove directly 

• Theorem: Any sorting algorithm that uses only comparisons uses at least  

 comparisons in the worst case.  

• Proof: We saw this in Algorithms.. 

• Or via reduction from a problem known to have a lower bound 

• We’ll use this to show that any algorithm for ConvexHull must have worst-
case complexity   

Ω(n lg n)

Ω(n lg n)



• We know that     Sorting 

• If we could show that ConvexHull is at least as hard as Sorting

Ω(n lg n) ≤

Lower bounds by reduction 

Sorting Convex hull≤

This would imply that  ConvexHull is Ω(n lg n)



• We‘ll show that we can use ConvexHull to Sort:    Let  P be a set of values that 
need to be sorted.  We’ll show that there exists some instance of the CH 
problem that sorts P, and we can build this instance in O(n) time

How do we show                                                ? 

• We want to show that ConvexHull gives an upper bound to Sorting. This would 
be true if we could solve Sorting via ConvexHull.

Sorting Convex hull≤

sort (array P) 
• create a set  P’ of points  from P 
• find ConvexHull(P’) 
• use the convex hull to infer sorted order of P 



• Let P: set of values x1, x2, …xn. to sort 

Sorting via ConvexHull

Our goal is to argue that 
there exists some instance of 

a convex hull problem that 
sorts our numbers. 



• Let P: set of values x1, x2, …xn. to sort 

y = x2

• Let P’: set points { pi = (xi, xi2)} 

Sorting via ConvexHull

pi = (xi, xi2)

xi xi
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x2

Sorting via ConvexHull

pi = (xi, xi2)

• Let P’: set points { pi = (xi, xi2)} 
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• Run CH(P’) to find their convex hull
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• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)

• They fall on a parabola, so every 
point is on the hull



• Let P: set of values x1, x2, …xn. to sort 
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• Run CH(P’) to find their convex hull
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• Find the lowest point on the hull

1
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• Find the lowest point on the hull
• walk in ccw order



• Let P: set of values x1, x2, …xn. to sort 

x2

Sorting via ConvexHull

• Run CH(P’) to find their convex hull

• Let P’: set points { pi = (xi, xi2)} 

x2

pi = (xi, xi2)

1 2 3 4 5

• Find the lowest point on the hull
• walk in ccw order

This is sorted order!

1
2

3
4

5



• Input: set of points x1, x2, …xn 
• Form a set of 2D points (xi, xi2).  
• Run the CH algorithm to construct their convex 

hull.  
• Find the lowest point on the hull, and walk from in 

ccw order.   This is sorted order!

Sorting via ConvexHull

Analysis:   runs in O(CH(n)) + O(n)  

• This shows that CH is an upper bound for sorting, or  Sorting  ConvexHull≤

• If we could find the CH faster than , we could use it to sort faster than 
 , which is impossible!

Θ(n lg n)
Θ(n lg n)



We show that we can use ConvexHull to Sort:    Let  P be a 
set of values that need to be sorted.  We’ll show that there 
exists some instance of the CH problem that sorts P, and we 
can build this instance in O(n) time

Summary

sorting is   Ω(n lg n)
reduces to 

(or: solves via) 

O(n)
sorting convex hull

Sort (n) = O(n)  + O(Convex Hull(n)) 

CH must be    Ω(n lg n)



• What we actually proved is that   

• Any CH algorithm that produces the boundary in order must take 
Omega (n lg n) in the worst case. 

• If we did not want the boundary in order, can the CH be constructed faster?  

• It was an open problem for a while  

• Finally, it was established quite recently that a convex hull algorithm, 
even if it does not produce the boundary in order, still needs  
in the worst case

Ω(n lg n)

Sorting reduces to CH



• Yes, Graham scan is the ultimate CH algorithm but… 
• not output sensitive  
• does not extend to 3D 

• The (re)search continues 



An incremental algorithm for CH



Incremental algorithms

• Goal: solve problem P 
• Idea:  traverse points one at a time and solve the problem for points seen so far   

• Incremental Algorithm  
• initialize solution S  
• for i=1 to n 

• //S represents solution of p1…….pi-1 
• update S to represent solution of  p1…..pi-1 pi



Incremental algo for CH

• CH = {} 
• for i=1 to n 

• //CH represents the CH of p1..pi-1 
• update CH to represent the  CH of p1..pi
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• CH = {} 
• for i=1 to n 

• //CH represents the CH of p1..pi-1 
• update CH to represent the  CH of p1..pi

and so on



Incremental algo for CH
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p15

• CH = {} 
• for i=1 to n 

• //CH represents the CH of p1..pi-1 
• update CH to represent the  CH of p1..pi



Incremental algo for CH

• Class work:  Pick a set of points, simulate the incremental approach, and try to 
answer the question: how do you handle each case?  

• CH = {} 
• for i=1 to n 

• //CH represents the CH of p1..pi-1 
• update CH to represent the  CH of p1..pi

• The basic operation is adding a point to a convex polygon 
• CASE 1: p is in polygon  
• CASE 2: p outside polygon 

How do you handle each case?



Incremental algo for CH

• The basic operation is adding a point to a convex polygon 
• CASE 1: p is in polygon  
• CASE 2: p outside polygon 

• CH = {} 
• for i=1 to n 

• //CH represents the CH of p1..pi-1 
• update CH to represent the  CH of p1..pi



Incremental algo for CH

• Issues to solve  
• What’s a good representation for a (convex) polygon? 
• We need a point-in-convex-polygon test  
• How to handle CASE 2 ?



Representing a polygon

A polygon is represented as a list of vertices in boundary order. 

(the convention is counter-clockwise order)

typedef struct _polygon{


int k; //number of vertices


Point* vertices; //the vertices, ccw in boundary order


} Polygon;


or


Vector<Point>            //note: the vertices, ccw in boundary order 



Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon 


bool point_in_polygon(point p, polygon H)


p

What has to be true in order for p to be inside?



Point in convex polygon

//return TRUE iff p on the boundary or inside H; H is convex a polygon 


bool point_in_convex_polygon(point p, polygon H)


//p is inside if and only if it is on or to the left of all edges, oriented ccw


//note:  this is NOT true for a non-convex polygon — can you show a


//counter-example?

p

Analysis:  O(k) where k is the size of the polygon 



Case 2: 

p

pi

pj

We want to find pi and pj

IDEAS?
Hint:   Check the orientation of p wrt the edges of the polygon. 



Case 2: 

p

pj

pi

R

R

RL

L

L
L

We want to find pi and pj

Hint:   Check the orientation of p wrt the edges of the polygon. 



Case 2: 

What do you notice?  How can we use this to find the tangent points? Sketch an 
algorithm.  How long does it take? 

p

pi

pj

We want to find pi and pj

Hint:   Check the orientation of p wrt the edges of the polygon. 



Finding tangent points 

Input: point p outside H


 polygon H = [p0, p1,…, pk-1] convex


• for i=0 to k-1 do 

• prev = ((i == 0)? k-1: i-1); 

• next = (i==k-1)? 0; k+1); 

• if XOR (p is left-or-on (pprev, pi), p is left-or-on(pi, pnext))


• then: pi is a tangent point

pi

R

R

RL

L

L
L

pj



Putting it all together



• H = [p1, p2, p3] 

• for i=4 to n do  

• //add pi to H 

• if point_in_polygon(pi, H) 

• //do nothing  

• else  

• find pk the tangent point where orientation changes from L to R 

• find pj the tangent point where orientation changes from R to L 

• cut out the part from pk to pj in H (note: pk not necessarily before pj in 
the vertex array of H. view H as wrapping around)

Incremental CH



• H = [p1, p2, p3] 

• for i=4 to n do  

• //add pi to H 

• if point_in_polygon(pi, H) 

• //do nothing  

• else  

• find pk the tangent point where orientation changes from L to R 

• find pj the tangent point where orientation changes from R to L 

• cut out the part from pk to pj in H (note: pk not necessarily before pj in 
the vertex array of H. view H as wrapping around)

Incremental CH

Simulate the algorithm on a couple of examples.  
Think how pi could come before pj  in H or the 
other way around. 



• H = [p1, p2, p3] 

• for i=4 to n do  

• //add pi to H 

• if point_in_polygon(pi, H) 

• //do nothing  

• else  

• find pk the tangent point where orientation changes from L to R 

• find pj the tangent point where orientation changes from R to L 

• cut out the part from pk to pj in H (note: pk not necessarily before pj in 
the vertex array of H. view H as wrapping around)

Incremental CH

Simulate the algorithm on a couple of examples.  
Think how pi could come before pj  in H or the 
other way around. 

Analysis:



• H = [p1, p2, p3] 

• for i=4 to n do  

• //add pi to H 

• if point_in_polygon(pi, H) 

• //do nothing  

• else  

• find pk the tangent point where orientation changes from L to R 

• find pj the tangent point where orientation changes from R to L 

• cut out the part from pk to pj in H (note: pk not necessarily before pj in 
the vertex array of H. view H as wrapping around)

Incremental CH

Analysis:  ∑
i

O(i) = Θ(n2)

O(i)

O(i)



• Improvement:   pre-sort the points by their x-coordinates and add them in this 
order.   What happens? 

Incremental CH



• Improvement:   pre-sort the points by their x-coordinates and add them in this 
order.   What happens?  
• point pi is to the right of pi-1, so it will be outside CH{p1, p2, …, pi-1} 
• No need to check!

Incremental CH

• pre-sort the points by their x-coordinates. Let H = [p1, p2, p3] 

• for i=4 to n do  

• //add pi to H 

• if point_in_polygon(pi, H) 

• //do nothing  

• else  

• find pk the tangent point where orientation changes from L to R 

• find pj the tangent point where orientation changes from R to L 

• cut out the part from pk to pj in H



• Improvement:   pre-sort the points by their x-coordinates and add them in this 
order.   What happens?  
• point pi is to the right of pi-1, so it will be outside CH{p1, p2, …, pi-1} 
• No need to check!

Incremental CH

• pre-sort the points by their x-coordinates. Let H = [p1, p2, p3] 

• for i=4 to n do  

• find pk the tangent point where orientation changes from L to R 

• find pj the tangent point where orientation changes from R to L 

• cut out the part from pk to pj in H

How do we make this run in O(n) once sorted?



Incremental CH

R

R

RL

L

L

L

pi

pi-1



Finding tangent points of pi to the hull H of {p1, p2, …, pi-1} 

• find vertex pi-1 on H 

• v = pi-1 

• while point pi lies to the right of (v, succ(v)): v = succ(v) 

• v is the upper tangent point  

• find lower tangent point analogously 

R

R

RL

L

L

L

pi

pi-1



Finding tangent points of pi to the hull H of {p1, p2, …, pi-1} 

• find vertex pi-1 on H 

• v = pi-1 

• while point pi lies to the right of (v, succ(v)): v = succ(v) 

• v is the upper tangent point  

• find lower tangent point analogously 

R

R

RL

L

L

L

pi

pi-1
Although finding a tangent 
point can take O(n), over 
all the executions over all 
pi it takes O(n)



Theorem: Incremental CH  (in 2D) takes O(n \lg n) to sort the points followed by 

O(n) to construct the convex hull. 



A divide-and-conquer algorithm for CH



Divide-and-conquer 

DC(input P)
if P is small, solve and return 
else 

//divide
divide input P into two halves, P1 and P2
//recurse 
result1 = DC(P1) 
result2 = DC(P2) 
//merge 
do_something_to_figure_out_result_for_P  
return result

Analysis: T(n) = 2T(n/2) + O(merge phase) 

• if merge phase is O(n):        T(n) = 2T(n/2) + O(n)         => O( n lg n)



CH via divide-and-conquer 



• find vertical line that splits P in half


CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line


P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)


P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)

• recursively find CH P2

P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)

• recursively find CH P2

  //now get somehow CH(P)

P1 P2

CH via divide-and-conquer 



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find CH(P1)

• recursively find CH P2

  //now get somehow CH(P)

P1 P2

CH via divide-and-conquer 



P1 P2

Merging two hulls..in linear time

• Need to find the two “tangents” (bridges?)



P1 P2

Merging two hulls..in linear time

• Here it looks like the upper tangent is between the top points in P1 and P2 
• Is that always true?



Not necessarily…

• Is the upper tangent guaranteed to connect the top points in P1 and P2 ? 



The top-most point overall is on the CH, but not necessarily on the upper tangent 



Merging two hulls..in linear time

•  Naive algorithm: try all segments (a,b) with a in H1 and b in H2  

      Too slow. => O(n2) merge, O(n2 lg n) CH algorithm

H1 H2



Merging two hulls..in linear time

H1 H2

• To find the upper bridge: 


• let P1, P2 = set of points to the left/right of line


• start with a = right most point of P1, b = left most point of P2


• while one of succ(a) and pred(b) lies above line ab do: 


• if succ(a) lies above ab then set a = succ(a)


• else : set b = pred(b)


• return ab as the upper bridge



Theorem: D&C CH  (in 2D) takes O(n \lg n)



• Yet another illustration of divide-and-conquer paradigm! 

• Runs in O(n lg n)  

• Extends nicely to 3D

CH via divide-and-conquer 


