Planar convex hulls (II)

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Properties of CH

- All edges of CH are extreme and all extreme edges of P are on the CH
- All points of CH are extreme and all extreme points of P are on the CH
- All internal angles are < 180
- Walking counterclockwise—> left turns
- Points on CH are sorted in radial order wrt a point inside

Outline

- Last time:
- Brute force
- Gift wrapping
- Quickhull
- Graham scan
- Next
- Andrew's monotone chain algorithm
- Exercises
- Lower bound
- More algorithms
- Incremental CH
- Divide-and-conquer CH

Andrew's Monotone Chain Algorithm (1979)

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

Andrew's Monotone Chain Algorithm (1979)

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

Andrew's Monotone Chain Algorithm (1979)

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

Andrew's Monotone Chain Algorithm (1979)

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

Andrew's Monotone Chain Algorithm (1979)

- Alternative to Graham's scan
- Idea: Find upper hull and lower hulls separately

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

Andrew's Monotone Chain Algorithm (1979)

- Goal: find the CH of P1
- Idea: Traverse points in (x,y) order (i.e. lexicographically)

and so on..

Andrew's Monotone Chain Algorithm (1979)

- Alternative to Graham's scan
- Idea: Traverse points in (x, y) lexicographic order (instead of radial order)
- Runs in sort + scan
- Sorting lexicographically is faster than sorting radially

Convex hull: summary

Naive	$O\left(n^{3}\right)$	
Gift wrapping	$O(n h)$	1973
Graham scan	$O(n \lg n)$	1972
Andrew monotone	$O(n \lg \mathrm{n})$	1979
Quickhull	$\mathrm{O}\left(\mathrm{n}^{2}\right)$	1977

Can we do better?

Lower bound

What is a lower bound?

- Given an algorithm A, its worst-case running time is the largest running time on any input of size n
$T_{A}(n)=\max _{|P|=n}\{T(n) \mid T(n)$ is the running time of algorithm A on input $P\}$

What is a lower bound?

- Given an algorithm A , its worst-case running time is the largest running time on any input of size n
$T_{A}(n)=\max _{|P|=n}\{T(n) \mid T(n)$ is the running time of algorithm A on input $P\}$
- A lower bound for CH : What is the worst-case running time of the best possible CH algorithm?

$$
\min _{A}\left\{T_{A}(n)\right\}
$$

What is a lower bound?

- Lower bounds depend on the machine model.
- The standard model is the decision tree (comparison) model.
- Sorting lower bound in the decision tree model is $\Omega(n \lg n)$.

How do we prove lower bounds?

- Prove directly
- Theorem: Any sorting algorithm that uses only comparisons uses at least $\Omega(n \lg n)$ comparisons in the worst case.
- Proof: We saw this in Algorithms..
- Or via reduction from a problem known to have a lower bound
- We'll use this to show that any algorithm for ConvexHull must have worstcase complexity $\Omega(n \lg n)$

Lower bounds by reduction

- We know that $\Omega(n \lg n) \leq$ Sorting
- If we could show that ConvexHull is at least as hard as Sorting

Sorting

\leq
Convex hull

This would imply that ConvexHull is $\Omega(n \lg n)$

- We want to show that ConvexHull gives an upper bound to Sorting. This would be true if we could solve Sorting via ConvexHull.
- We'll show that we can use ConvexHull to Sort: Let P be a set of values that need to be sorted. We'll show that there exists some instance of the CH problem that sorts P , and we can build this instance in $\mathrm{O}(\mathrm{n})$ time

```
sort (array P)
```

- create a set P^{\prime} of points from P
- find ConvexHull(P')
- use the convex hull to infer sorted order of P

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort

Our goal is to argue that there exists some instance of a convex hull problem that sorts our numbers.

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort

$$
y=x^{2}
$$

Sorting via ConvexHull

- Let P : set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort

- Let $P^{\prime}:$ set points $\left\{p_{i}=\left(x_{i}, x_{i}^{2}\right)\right\}$

$$
\mathrm{p}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}^{2}}\right)
$$

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort
- Let P^{\prime} : set points $\left\{p_{i}=\left(x_{i}, x_{i}{ }^{2}\right)\right\}$
- Run $\mathrm{CH}\left(\mathrm{P}^{\prime}\right)$ to find their convex hull

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort
- Let P^{\prime} : set points $\left\{p_{i}=\left(x_{i}, x_{i}{ }^{2}\right)\right\}$
- Run $\mathrm{CH}\left(\mathrm{P}^{\prime}\right)$ to find their convex hull
- They fall on a parabola, so every point is on the hull

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort
- Let P^{\prime} : set points $\left\{p_{i}=\left(x_{i}, x_{i}{ }^{2}\right)\right\}$
- Run $\mathrm{CH}\left(\mathrm{P}^{\prime}\right)$ to find their convex hull
- Find the lowest point on the hull

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort
- Let P^{\prime} : set points $\left\{p_{i}=\left(x_{i}, x_{i}{ }^{2}\right)\right\}$
- Run $\mathrm{CH}\left(\mathrm{P}^{\prime}\right)$ to find their convex hull
- Find the lowest point on the hull
- walk in ccw order

Sorting via ConvexHull

- Let P: set of values $x_{1}, x_{2}, \ldots x_{n}$. to sort
- Let P^{\prime} : set points $\left\{p_{i}=\left(x_{i}, x_{i}{ }^{2}\right)\right\}$
- Run $\mathrm{CH}\left(\mathrm{P}^{\prime}\right)$ to find their convex hull
- Find the lowest point on the hull
- walk in ccw order

This is sorted order!

Sorting via ConvexHull

- Input: set of points $x_{1}, x_{2}, \ldots x_{n}$
- Form a set of 2D points $\left(x_{i}, x_{i}\right)^{2}$.
- Run the CH algorithm to construct their convex hull.
- Find the lowest point on the hull, and walk from in ccw order. This is sorted order!

Analysis: runs in $\mathrm{O}(\mathrm{CH}(\mathrm{n}))+\mathrm{O}(\mathrm{n})$

- This shows that CH is an upper bound for sorting, or Sorting \leq ConvexHull
- If we could find the CH faster than $\Theta(n \lg n)$, we could use it to sort faster than $\Theta(n \lg n)$, which is impossible!

Summary

sorting
 sorting is $\Omega(n \lg n)$
 convex hull
 reduces to (or: solves via)

We show that we can use ConvexHull to Sort: Let P be a set of values that need to be sorted. We'll show that there exists some instance of the CH problem that sorts P , and we can build this instance in $\mathrm{O}(\mathrm{n})$ time

$$
\text { Sort }(\mathrm{n})=\mathrm{O}(\mathrm{n})+\mathrm{O}(\text { Convex Hull(n)) }
$$

CH must be $\Omega(n \lg n)$

Sorting reduces to CH

- What we actually proved is that
- Any CH algorithm that produces the boundary in order must take Omega ($\mathrm{n} \lg \mathrm{n}$) in the worst case.
- If we did not want the boundary in order, can the CH be constructed faster?
- It was an open problem for a while
- Finally, it was established quite recently that a convex hull algorithm, even if it does not produce the boundary in order, still needs $\Omega(n \lg n)$ in the worst case
- Yes, Graham scan is the ultimate CH algorithm but...
- not output sensitive
- does not extend to 3D
- The (re)search continues

An incremental algorithm for CH

Incremental algorithms

- Goal: solve problem P
- Idea: traverse points one at a time and solve the problem for points seen so far
- Incremental Algorithm
- initialize solution S
- for $\mathrm{i}=1$ to n
- //S represents solution of $\mathrm{p}_{1} \ldots \ldots \mathrm{p}_{\mathrm{i}-1}$
- update S to represent solution of $p_{1} \ldots . . \mathrm{p}_{\mathrm{i}-1} \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1 . .} \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1 . .} \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1 . .} \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1 . .} \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

$$
\mathrm{P}_{15}
$$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1 . .} \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . . \mathrm{p}_{\mathrm{i}}$
- The basic operation is adding a point to a convex polygon
- CASE 1: p is in polygon

How do you handle each case?

- CASE 2: p outside polygon
- Class work: Pick a set of points, simulate the incremental approach, and try to answer the question: how do you handle each case?

Incremental algo for CH

- $\mathrm{CH}=\{ \}$
- for $\mathrm{i}=1$ to n
- //CH represents the CH of $\mathrm{p}_{1 . .} \mathrm{p}_{\mathrm{i}-1}$
- update CH to represent the CH of $\mathrm{p}_{1} . \mathrm{p}_{\mathrm{i}}$
- The basic operation is adding a point to a convex polygon
- CASE 1: p is in polygon
- CASE 2: p outside polygon

Incremental algo for CH

- Issues to solve
- What's a good representation for a (convex) polygon?
- We need a point-in-convex-polygon test
- How to handle CASE 2 ?

Representing a polygon

A polygon is represented as a list of vertices in boundary order.
(the convention is counter-clockwise order)

```
typedef struct _polygon{
    int k; //number of vertices
    Point* vertices; //the vertices, ccw in boundary order
    } Polygon;
```

 or

Point in convex polygon

//return TRUE iff p on the boundary or inside $H ; H$ is convex a polygon bool point_in_polygon(point p, polygon H)

[^0]
Point in convex polygon

//return TRUE iff p on the boundary or inside $\mathrm{H} ; \mathrm{H}$ is convex a polygon bool point_in_convex_polygon(point p, polygon H)
$/ / p$ is inside if and only if it is on or to the left of all edges, oriented ccw //note: this is NOT true for a non-convex polygon - can you show a
//counter-example?

Analysis: $O(k)$ where k is the size of the polygon

IDEAS?

Hint: Check the orientation of p wrt the edges of the polygon.

Hint: Check the orientation of p wrt the edges of the polygon.

What do you notice? How can we use this to find the tangent points? Sketch an algorithm. How long does it take?

Hint: Check the orientation of p wrt the edges of the polygon.

Finding tangent points

Input: point p outside H polygon $H=\left[p_{0}, p_{1}, \ldots, p_{k-1}\right]$ convex

- for $\mathrm{i}=0$ to $\mathrm{k}-1$ do
- prev = ($(i==0)$? $k-1: i-1)$;

- next $=(i==k-1) ? 0 ; k+1)$;
- if XOR (p is left-or-on ($p_{\text {prev, }} p_{i}$), p is left-or-on($\left.p_{i}, p_{\text {next }}\right)$)
- then: p_{i} is a tangent point

Putting it all together

Incremental CH

- $H=[p 1, p 2, p 3]$
- for $\mathrm{i}=4$ to n do
- //add pi to H
- if point_in_polygon(pi, H)
- //do nothing
- else
- find p_{k} the tangent point where orientation changes from L to R
- find p_{j} the tangent point where orientation changes from R to L
- cut out the part from p_{k} to p_{j} in H (note: pk not necessarily before pj in the vertex array of H . view H as wrapping around)

Incremental CH

- $H=[p 1, p 2, p 3]$
- for $\mathrm{i}=4$ to n do
- //add pi to H
- if point_in_polygon(pi, H)
- //do nothing

Simulate the algorithm on a couple of examples.
Think how p_{i} could come before p_{j} in H or the other way around.

- else
- find p_{k} the tangent point where orientation changes from L to R
- find p_{j} the tangent point where orientation changes from R to L
- cut out the part from p_{k} to p_{j} in H (note: pk not necessarily before pj in the vertex array of H . view H as wrapping around)

Incremental CH

- $H=[p 1, p 2, p 3]$
- for $\mathrm{i}=4$ to n do
- //add pi to H
- if point_in_polygon(pi, H)
- //do nothing

Simulate the algorithm on a couple of examples.
Think how p_{i} could come before p_{j} in H or the other way around.

- else
- find p_{k} the tangent point where orientation changes from L to R
- find p_{j} the tangent point where orientation changes from R to L
- cut out the part from p_{k} to p_{j} in H (note: pk not necessarily before pj in the vertex array of H . view H as wrapping around)

Analysis:

Incremental CH

- $H=[p 1, p 2, p 3]$
- for $\mathrm{i}=4$ to n do
- //add pi to H
- if point_in_polygon(pi, H)
- //do nothing
- else
- find p_{k} the tangent point where orientation changes from L to R
- find p_{j} the tangent point where orientation changes from R to L
- cut out the part from p_{k} to p_{j} in H (note: pk not necessarily before jj in the vertex array of H . view H as wrapping around)

Analysis:

$$
\sum_{i} O(i)=\Theta\left(n^{2}\right)
$$

Incremental CH

- Improvement: pre-sort the points by their x-coordinates and add them in this order. What happens?

Incremental CH

- Improvement: pre-sort the points by their x-coordinates and add them in this order. What happens?
- point p_{i} is to the right of p_{i-1}, so it will be outside $C H\left\{p_{1}, p_{2}, \ldots, \mathrm{pi}^{-1}\right\}$
- No need to check!
- pre-sort the points by their x-coordinates. Let $H=[p 1, p 2, p 3]$
- for $\mathrm{i}=4$ to n do
- Hadd pito H
- if point_in_polygon(pi,H)
- Hdo nothing
- else
- find p_{k} the tangent point where orientation changes from L to R
- find p_{j} the tangent point where orientation changes from R to L
- cut out the part from p_{k} to p_{j} in H

Incremental CH

- Improvement: pre-sort the points by their x-coordinates and add them in this order. What happens?
- point p_{i} is to the right of p_{i-1}, so it will be outside $C H\left\{p_{1}, p_{2}, \ldots\right.$, pi-1 $\}$
- No need to check!
- pre-sort the points by their x-coordinates. Let $H=[p 1, \mathrm{p} 2, \mathrm{p} 3]$
- for $\mathrm{i}=4$ to n do
- find p_{k} the tangent point where orientation changes from L to R
- find p_{j} the tangent point where orientation changes from R to L
- cut out the part from p_{k} to p_{j} in H

How do we make this run in $O(n)$ once sorted?

Incremental CH

Finding tangent points of pi to the hull H of $\{p 1, p 2, \ldots, p i-1\}$

- find vertex $\mathrm{p}_{\mathrm{i}-1}$ on H
- $\mathrm{V}=\mathrm{p}_{\mathrm{i}-1}$
- while point pi lies to the right of $(\mathrm{v}, \operatorname{succ}(\mathrm{v})): \mathrm{v}=\operatorname{succ}(\mathrm{v})$
- v is the upper tangent point
- find lower tangent point analogously

Finding tangent points of pi to the hull H of $\{\mathrm{p} 1, \mathrm{p} 2, \ldots, \mathrm{pi}-1\}$

- find vertex $\mathrm{p}_{\mathrm{i}-1}$ on H
- $\mathrm{V}=\mathrm{p}_{\mathrm{i}-1}$
- while point pi lies to the right of $(\mathrm{v}, \operatorname{succ}(\mathrm{v})): \mathrm{v}=\operatorname{succ}(\mathrm{v})$
- v is the upper tangent point
- find lower tangent point analogously

Theorem: Incremental CH (in 2D) takes O($\mathrm{n} \backslash \mathrm{lg} \mathrm{n}$) to sort the points followed by $\mathrm{O}(\mathrm{n})$ to construct the convex hull.

A divide-and-conquer algorithm for CH

Divide-and-conquer

DC(input P)

if P is small, solve and return
else
//divide
divide input P into two halves, P1 and P2
//recurse
result1 = DC(P1)
result2 $=\mathbf{D C}($ P2 $)$

//merge

do_something_to_figure_out_result_for_P
return result

Analysis: $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}($ merge phase $)$

- if merge phase is $O(n): \quad T(n)=2 T(n / 2)+O(n) \quad \Rightarrow O(n \lg n)$

CH via divide-and-conquer

CH via divide-and-conquer

- find vertical line that splits P in half

CH via divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

CH via divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find $\mathrm{CH}(\mathrm{Pl})$

CH via divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find $\mathrm{CH}(\mathrm{Pl})$
- recursively find CH P2

CH via divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find $\mathrm{CH}(\mathrm{Pl})$
- recursively find CH P2 //now get somehow $\mathrm{CH}(\mathrm{P})$

CH via divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find $\mathrm{CH}(\mathrm{Pl})$
- recursively find CH P2
//now get somehow $\mathrm{CH}(\mathrm{P})$

Merging two hulls..in linear time

- Need to find the two "tangents" (bridges?)

Merging two hulls..in linear time

- Here it looks like the upper tangent is between the top points in P_{1} and P_{2}
- Is that always true?

- Is the upper tangent guaranteed to connect the top points in P_{1} and P_{2} ?

Not necessarily...

The top-most point overall is on the CH , but not necessarily on the upper tangent

Merging two hulls..in linear time

- Naive algorithm: try all segments (a, b) with a in H_{1} and b in H_{2} Too slow. => O(n^{2}) merge, $\mathrm{O}\left(\mathrm{n}^{2} \lg \mathrm{n}\right) \mathrm{CH}$ algorithm

Merging two hulls..in linear time

- To find the upper bridge:

- let P1, P2 = set of points to the left/right of line
- start with $a=$ right most point of P1, b $=$ left most point of P2
- while one of $\operatorname{succ}(a)$ and pred(b) lies above line $a b$ do:
- if succ(a) lies above $a b$ then set $a=\operatorname{succ}(a)$
- else : set $b=\operatorname{pred}(b)$
- return $a b$ as the upper bridge

Theorem: D\&C CH (in 2D) takes O($\mathrm{n} \backslash \mathrm{lg} \mathrm{n}$)

CH via divide-and-conquer

- Yet another illustration of divide-and-conquer paradigm!
- Runs in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Extends nicely to 3D

[^0]: What has to be true in order for p to be inside?

