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Convex Hull

The problem:  Given a set P of points in 2D, describe an algorithm to compute their convex hull

Output: 
 array/list of points on the CH (in boundary order)

Input: 
 array P of points (in 2D)



• One of the first problems studied in CG 
• Many solutions 

• simple, elegant, intuitive 
• illustrate techniques for geometrical algorithms 

• Lots of applications  
• robotics, path planning, partitioning problems, shape recognition, 

separation problems, etc 

Convex Hull



• Shape analysis, matching, recognition   
• approximate objects by their CH

Applications



• Path planning:  find (shortest) collision-free path from start to end

Applications

start

end

obstacle



• Path planning:  find (shortest) collision-free path from start to end 

• It can be shown that the shortest path follows CH(obstacle); also, it is the 
shorter of the upper path  and lower path 

Applications

start

end

obstacle



• Partitioning  problems    
• does there exist a line separating two objects? 

Applications
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• Find the two points in P that are farthest away
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Applications



Outline

• Properties of CH  

• Algorithms for computing the CH (P) 

• Brute-force 

• Gift wrapping (or: Jarviz march) 

• Quickhull  

• Graham scan  

• Andrew’s monotone chain  

• Incremental  

• Divide-and-conquer  

• Can we do better?  

• Lower bound for CH



Convexity: algebraic view

• A convex combination of points p1, p2, …pk is a point of the form     

c1p1+c2p2+…ckpk, with ci  in [0,1], c1+c2+…+ck=1

p

q

c1p + (1-c1)q
p1

p3

p2

c1p1+c2p2+(1-c1-c2)p3

a triangle consists of all convex 
combinations of its 3 vertices

• The convex hull CH(P) = all convex combinations of points in P

a segment consists of all convex 
combinations of its 2 vertices



Convex Hull

Output: 
 list of points on the CH (in boundary order)

Input: 
 array P of points (in 2D)



What exactly is on the CH?

degenerate cases:

these points can be 
considered on CH or not 



Convex Hull Variants

• Several types of convex hull output are conceivable 
• all points on the convex hull in arbitrary order 
• all points on the convex hull in boundary order 
• only non-collinear points in arbitrary order   
• only non-collinear points in boundary order 

• It may seem that computing in boundary order is harder 
• we’ll see that identifying the points  on the CH is Omega(n lg n) 

==>  sorting is not dominant 



Convex Hull:  

Basic properties 



Points on the CH are extreme

Points not on the CH are interior



Interior points 
• A point p is called  interior if p is contained in the interior of a triangle formed by 

three other points of P (or: in interior of a segment formed by two points). 
• Claim: p interior <==> p not  on the CH 



Extreme points
• A point p is called extreme if there exists a line l through p, such that all the other 

points of P are on the same side of l (or on l)
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Extreme points
• A point p is called extreme if there exists a line l through p, such that all the other 

points of P are on the same side of l (and not on l)

NOT extreme

extreme

extreme



• Claim:  A point is on the CH  <==> it is extreme

Extreme points
• A point p is called extreme if there exists a line l through p, such that all the other 

points of P are on the same side of l (and not on l)



Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)



Extreme edges

extreme

not extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)



Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on) 
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme. 

extreme
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Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on) 
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme. 

extreme



Summary

• CH consists of extreme points and edges! 
• point p is interior    <==>  p not  on the CH 

• point p is extreme  <==>  p on the CH 

• A pair of points (pi, pj) form an edge on the CH <==> edge (pi, pj) is 
extreme 

• First algorithm idea: find the CH by testing which edges are  extreme



Brute force: Find extreme edges

Algorithm (input P) 
• for all distinct pairs (pi, pj) 

• check if edge (pi,pj) is extreme

• Analysis?



Gift wrapping (1970)

p

q

r

- Idea: use an edge to find the next one 
- How to find an extreme edge to start from?  
- Given an extreme edge, how to find the next one? 

- Observation: CH consists of extreme edges, and each edge shares a vertex 
with  next edge



p

q

r

Can you think of some points that are guaranteed to be in CH? 

How to find an extreme edge to start from? 



• Claim 
• point with minimum x-coordinate is extreme  
• point with maximum x-coordinate is extreme  
• point with minimum y-coordinate is extreme  
• point with maximum y-coordinate is extreme 

• Can you justify why? 



Gift wrapping (1970)



Gift wrapping (1970)

• Start from bottom-most point   
• if more then one, pick right most
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Gift wrapping (1970)

• Start from bottom-most point   
• if more then one, pick right most 

//find first edge. HOW ? 



Gift wrapping (1970)

minimum slope

• Start from bottom-most point   
• if more then one, pick right most 

//find first edge. HOW ? 



Gift wrapping (1970)

• Start from bottom-most point   
• if more then one, pick right most 

  /******** find first edge ********/ 
• for each point q  (q != p) 

• compute slope of q wrt p 
• let p’ = point with smallest slope 

    //claim: pp’ is extreme edge  
• output (p, p’) as first edge  

/**********what next ? ********/
p

p’



Gift wrapping (1970)

p

p’

• Start from bottom-most point  
• if more then one, pick right most 

  /******** find first edge ********/ 
• for each point q  (q != p) 

• compute slope of q wrt p 
• let p’ = point with smallest slope 

    //claim: pp’ is extreme edge  
• output (p, p’) as first edge  
• repeat from p’



• p0 = point with smallest  y-coordinate  (if more then one, pick right most) 
•   p = p0  
• repeat  

• for each point q  (q != p) 
• compute ccw-angle of q wrt previous edge 

• let p’ = point with smallest angle 
• output (p, p’) as CH edge  
• p = p’ 

• until p = p0   //until it discovers first point again

Gift wrapping (1970)

p’

p0



• p0 = point with smallest  y-coordinate  (if more then one, pick right most) 
•   p = p0  
• repeat  

• for each point q  (q != p) 
• compute ccw-angle of q wrt previous edge 

• let p’ = point with smallest angle 
• output (p, p’) as CH edge  
• p = p’ 

• until p = p0   //until it discovers first point again

Gift wrapping (1970)

p0

p



• p0 = point with smallest  y-coordinate  (if more then one, pick right most) 
•   p = p0  
• repeat  

• for each point q  (q != p) 
• compute ccw-angle of q wrt previous edge 

• let p’ = point with smallest angle 
• output (p, p’) as CH edge  
• p = p’ 

• until p = p0   //until it discovers first point again

Gift wrapping (1970)

p0

p

p’



The gift wrapping algorithm : Classwork

• Simulate Gift Wrapping on an arbitrary (small) set of points  
• consider how it works in degenerate cases 

• Analysis: Running time?  Express function of n and k, where k is the output size (number of 
points on the convex hull) 

• How small/large can k be for a set of n points?  

• Show examples that trigger best/worst cases 

• Based on this, discuss when gift-wrapping is a good choice



Summary

• Gift wrapping algorithm

• Runs in O(kn) time, where k is the size of the CH(P) 

• Efficient if k is small:  

• For k = O(1), it takes O(n) 

• Not efficient if k is large:  

• For k = O(n), gift wrapping takes O(n2) 

• Faster algorithms are known  

• Gift wrapping extends easily to 3D and for many years was the primary algorithm for 
3D 



Quickhull



left most point

right most point

upper hull

lower hull

Convex polygons: Properties



Quickhull  (late 1970s)
• Similar to Quicksort (in some way)



Quickhull  (late 1970s)

• Idea: start with 2 extreme points

a
b



Quickhull  (late 1970s)

• CH = upper hull  (CH of P1) + lower hull (CH of P2)

a
b

P1

P2
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Quickhull  (late 1970s)

• CH = upper hull  (CH of P1) + lower hull (CH of P2)

a
b

P1

P2



Quickhull  (late 1970s)

• We’ll find the CH(P1) and CH(P2) separately

a
b

P1

P2



Quickhull  (late 1970s)

• First let’s focus on P1

a
b

P1



Quickhull  (late 1970s)

• For all points p in P1:  compute dist(p, ab)

a
b

let’s ignore collinear 
 points for now



Quickhull  (late 1970s)

• Find the point c with largest distance (i.e. furthest away from ab)

a
b

c

let’s ignore collinear 
 points for now



Quickhull  (late 1970s)

• Find the point c with largest distance (i.e. furthest away from ab)

a
b

c

• Claim: c must be an extreme point (and thus on the CH of P1) 
• Why? 

let’s ignore collinear 
 points for now



Quickhull  (late 1970s)

• Discard all points inside triangle abc

a
b

c

let’s ignore collinear 
 points for now



Quickhull  (late 1970s)

• Discard all points inside triangle abc

a
b

c

let’s ignore collinear 
 points for now

interior points



Quickhull  (late 1970s)

• Recurse on the points left of ac and right of bc 

a
b

c

let’s ignore collinear 
 points for now



Quickhull  (late 1970s)

a
b

c

• Recurse on the points left of ac and right of bc 



Quickhull  (late 1970s)

• Compute CH of P2 similarly

a
b

c



Quickhull  (late 1970s)

• Quickhull (P)
• find a, b 
• partition P into P1, P2 
• return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2) 

• Quickhull(a,b,P)
//invariant: P is a set of points all on the left of ab 
• if P empty => return emptyset 
• for each point p in P: compute its distance to ab 
• let c = point with max distance 
• let P1 = points to the left of ac  
• let P2 = points to the left of cb 
• return Quickhull(a,c,P1) + c + Quickhull(c,b,P2)

a
b

c



• Simulate Quickhull on a set of points and think how it works in degenerate cases 

• Analysis:  
• Write a recurrence relation for its running time 
• What/when is the worst case running time ? 
• What/when is the best case running time ?   

• Argue that Quickhull’s average complexity is O(n) on points that are uniformly distributed.  

a
b

c
Quickhull : Classwork



Summary

• Convex Hull algorithms so far  

• Brute force: O(n3) 

• Gift wrapping:   O(kn) 

• output-size sensitive: O(n) best case, O(n2) worst case 

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary 
dimensions; for many years was the primary algorithms for 
higher dimensions 

• Quickhull:  O(n2) 

• Next  

• Graham scan  

• lower bound  

• other approaches: incremental, divide-and-conquer 



Graham scan



Graham scan  (late 1960s)

• In late 60s an application at Bell Labs required the hull of 10,000 points, for which 
a quadratic algorithm was too slow  

• Graham developed an algorithm which runs in O(n lg n) 

• It runs in one sort plus a linear pass!! 

• Simple, intuitive, elegant and practical 

• You’ll love it  



Walk ccw along the boundary of a convex polygon

Only left turns!!! 
Convex polygons: Properties



For any point p inside, the points on the boundary are in radial order around p

Walk ccw along the boundary of a convex polygon

Convex polygons: Properties



Graham scan  (late 1960s)



Graham scan  (late 1960s)

• Idea:    start from a point p interior to the hull <——- we’ll think about how to get it later 

           

p



p

Graham scan  (late 1960s)

• Idea:    start from a point p interior to the hull <——- we’ll think about how to get it later 

             order all points by their ccw angle wrt p 
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• Idea:    start from a point p interior to the hull  

             order all points by their ccw angle wrt p 

p

q



Graham scan  (late 1960s)

• Idea:    start from a point p interior to the hull  

             order all points by their ccw angle wrt p 

p

angleq = atan (q.y - p.y)/(q.x - p.x)

q



Graham scan  (late 1960s)

• Idea:  traverse the points in this order a, b, c, d, e, f, g,…

p

ab
cd

e

f

g

h

i
j

k

l
m n



Graham scan  (late 1960s)

• Idea:  traverse the points in this order a, b, c, d, e, f, g,… 
• initially we put a, b in S  

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:  
we maintain S  
as the CH of  

the points traversed  
so far 



Graham scan  (late 1960s)

Now we read point c:   what do we do with it? 

p
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cd

e
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g

h

i
j

k

l
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as the CH of  

the points traversed  
so far 
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Is (c, b, a) convex? 



Graham scan  (late 1960s)

Now we read point c:   what do we do with it?  

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:  
we maintain S  
as the CH of  

the points traversed  
so far 

Is (c, b, a) convex? 

YES!



Graham scan 

Now we read point c:   if  (c+S)  stays convex : add c to S

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:  
we maintain S  
as the CH of  

the points traversed  
so far 

Is (c, b, a) convex? 

YES!

is c left of ab



Graham scan  (late 1960s)

Now we read point d:

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:  
we maintain S  
as the CH of  

the points traversed  
so far 



Graham scan  (late 1960s)

Now we read point d:   is d left of bc? NO 

                  

p
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cd

e

f

g

h

i
j

k
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Invariant:  
we maintain S  
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the points traversed  
so far 



Graham scan  (late 1960s)

Now we read point d:   is d left of bc? NO 

                   //can’t add d, because (d,c,b,a) not convex
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Graham scan  (late 1960s)

Now we read point d:   is d left of bc? NO 

                     pop c; is d left of ab?
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Now we read point d:   is d left of bc? NO 

                     pop c; is d left of ab?

p
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we maintain S  
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the points traversed  
so far 



Graham scan  (late 1960s)

Now we read point d:   is d left of bc? NO 

                     pop c; is d left of ab? YES ==> insert d in S

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (d, b, a)

Invariant:  
we maintain S  
as the CH of  

the points traversed  
so far 



Graham scan  (late 1960s)

In general, we read next point q:    
• let b = head(S), a = next(b)  
• if q is left of ab:   add q to S

S = (b, a, ….) S = (q, b, a, ….)

p

b a

q

p

b a

q
push q



Graham scan  (late 1960s)

In general, we read next point q:    
• let b = head(S), a = next(b)  
• if q is right of ab:  pop b; repeat until q is left of ab, then add q to S

S = (b, a, ….) S = (q, a, ….)

p

b

a
q

pop b 
push q

p

b
aq



How many vertices might need to be popped, when 
looking at the next vertex q?



Graham scan  (late 1960s)

Cascading pops

p

q

p

q



Graham scan: ANALYSIS

• Find interior point p0 
• Sort all other points ccw around p0….. 
• Initialize stack S = (p2, p1)  
• for i=3 to n-1 do  

• if pi is left of (second(S),first(S)):   
• push pi on S 

• else  
• do  

• pop S 
• while pi is right of (second(S), first(S)) 
• push pi on S

• call them p1, p2, p3, …pn-1 in this order

note that we are ignoring some details, 
such as what happens if first point p1 
is not on the CH, and can the stack 
ever run empty. We’ll see we can 
avoid both.
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Graham scan: ANALYSIS

• Find interior point p0           
• Sort all other points ccw around p0…..  
• Initialize stack S = (p2, p1)  
• for i=3 to n-1 do  

• if pi is left of (second(S),first(S)):   
• push pi on S 

• else  
• do  

• pop S 
• while pi is right of (second(S), first(S)) 
• push pi on S

O(n) (we’ll think of it later)

O(n lg n)

How long does this take?

every point is pushed once 
and popped at most once => O(n) 



Graham scan: Details

• How to find an  interior point?  
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Graham scan: Details

• How to find an  interior point?  
• A simplification is to pick p0 as the lowest point  

• initialize stack S = (p1, p0)  

     //both are on CH and S will always contain at least 2 points  

p0

p1



Graham scan: Class work

• Choose a set of “interesting” points and go through the algorithm  

• Think what constitute degenerate cases.  Does the algorithm handle them? If not, 
how do you fix it?  



Graham scan: Details

• Handling collinear-ities What happens when  
you run on this input?

How can you fix it?



Graham scan: Details

• Handling collinear-ities 

This is what we want:



Speeding up Graham scan
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Speeding up Graham scan


