
Planar convex hulls (I)

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.

convex non-convex

Convexity

A polygon P is convex if for any p, q in P, the segment pq lies entirely in P.

convex non-convex

Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Convex Hull

The problem: Given a set P of points in 2D, describe an algorithm to compute their convex hull

Output:
 array/list of points on the CH (in boundary order)

Input:
 array P of points (in 2D)

• One of the first problems studied in CG
• Many solutions

• simple, elegant, intuitive
• illustrate techniques for geometrical algorithms

• Lots of applications
• robotics, path planning, partitioning problems, shape recognition,

separation problems, etc

Convex Hull

• Shape analysis, matching, recognition
• approximate objects by their CH

Applications

• Path planning: find (shortest) collision-free path from start to end

Applications

start

end

obstacle

• Path planning: find (shortest) collision-free path from start to end

• It can be shown that the shortest path follows CH(obstacle); also, it is the
shorter of the upper path and lower path

Applications

start

end

obstacle

• Partitioning problems
• does there exist a line separating two objects?

Applications

YES

• Partitioning problems
• does there exist a line separating two objects?

Applications

NO

• Partitioning problems
• does there exist a line separating two objects?

Applications

YES

• Partitioning problems
• does there exist a line separating two objects?

Applications

NO

• Find the two points in P that are farthest away

Applications

• Find the two points in P that are farthest away

Applications

Outline

• Properties of CH

• Algorithms for computing the CH (P)

• Brute-force

• Gift wrapping (or: Jarviz march)

• Quickhull

• Graham scan

• Andrew’s monotone chain

• Incremental

• Divide-and-conquer

• Can we do better?

• Lower bound for CH

Convexity: algebraic view

• A convex combination of points p1, p2, …pk is a point of the form

c1p1+c2p2+…ckpk, with ci in [0,1], c1+c2+…+ck=1

p

q

c1p + (1-c1)q
p1

p3

p2

c1p1+c2p2+(1-c1-c2)p3

a triangle consists of all convex
combinations of its 3 vertices

• The convex hull CH(P) = all convex combinations of points in P

a segment consists of all convex
combinations of its 2 vertices

Convex Hull

Output:
 list of points on the CH (in boundary order)

Input:
 array P of points (in 2D)

What exactly is on the CH?

degenerate cases:

these points can be
considered on CH or not

Convex Hull Variants

• Several types of convex hull output are conceivable
• all points on the convex hull in arbitrary order
• all points on the convex hull in boundary order
• only non-collinear points in arbitrary order
• only non-collinear points in boundary order

• It may seem that computing in boundary order is harder
• we’ll see that identifying the points on the CH is Omega(n lg n)

==> sorting is not dominant

Convex Hull:

Basic properties

Points on the CH are extreme

Points not on the CH are interior

Interior points
• A point p is called interior if p is contained in the interior of a triangle formed by

three other points of P (or: in interior of a segment formed by two points).
• Claim: p interior <==> p not on the CH

Extreme points
• A point p is called extreme if there exists a line l through p, such that all the other

points of P are on the same side of l (or on l)

Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

Extreme points

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

Extreme points

extreme

extreme

• A point p is called extreme if there exists a line l through p, such that all the other
points of P are on the same side of l (and not on l)

Extreme points
• A point p is called extreme if there exists a line l through p, such that all the other

points of P are on the same side of l (and not on l)

NOT extreme

extreme

extreme

• Claim: A point is on the CH <==> it is extreme

Extreme points
• A point p is called extreme if there exists a line l through p, such that all the other

points of P are on the same side of l (and not on l)

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

Extreme edges

extreme

not extreme

• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme.

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme.

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme.

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme.

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme.

extreme

Extreme edges
• An edge (pi, pj) is extreme if all the other points of P are on one side of it (or on)
• Claim: A pair of points (pi, pj) form an edge on the CH iff edge (pi, pj) is extreme.

extreme

Summary

• CH consists of extreme points and edges!
• point p is interior <==> p not on the CH

• point p is extreme <==> p on the CH

• A pair of points (pi, pj) form an edge on the CH <==> edge (pi, pj) is
extreme

• First algorithm idea: find the CH by testing which edges are extreme

Brute force: Find extreme edges

Algorithm (input P)
• for all distinct pairs (pi, pj)

• check if edge (pi,pj) is extreme

• Analysis?

Gift wrapping (1970)

p

q

r

- Idea: use an edge to find the next one
- How to find an extreme edge to start from?
- Given an extreme edge, how to find the next one?

- Observation: CH consists of extreme edges, and each edge shares a vertex
with next edge

p

q

r

Can you think of some points that are guaranteed to be in CH?

How to find an extreme edge to start from?

• Claim
• point with minimum x-coordinate is extreme
• point with maximum x-coordinate is extreme
• point with minimum y-coordinate is extreme
• point with maximum y-coordinate is extreme

• Can you justify why?

Gift wrapping (1970)

Gift wrapping (1970)

• Start from bottom-most point
• if more then one, pick right most

Gift wrapping (1970)

• Start from bottom-most point
• if more then one, pick right most

//find first edge. HOW ?

Gift wrapping (1970)

• Start from bottom-most point
• if more then one, pick right most

//find first edge. HOW ?

Gift wrapping (1970)

minimum slope

• Start from bottom-most point
• if more then one, pick right most

//find first edge. HOW ?

Gift wrapping (1970)

• Start from bottom-most point
• if more then one, pick right most

 /******** find first edge ********/
• for each point q (q != p)

• compute slope of q wrt p
• let p’ = point with smallest slope

 //claim: pp’ is extreme edge
• output (p, p’) as first edge

/**********what next ? ********/
p

p’

Gift wrapping (1970)

p

p’

• Start from bottom-most point
• if more then one, pick right most

 /******** find first edge ********/
• for each point q (q != p)

• compute slope of q wrt p
• let p’ = point with smallest slope

 //claim: pp’ is extreme edge
• output (p, p’) as first edge
• repeat from p’

• p0 = point with smallest y-coordinate (if more then one, pick right most)
• p = p0
• repeat

• for each point q (q != p)
• compute ccw-angle of q wrt previous edge

• let p’ = point with smallest angle
• output (p, p’) as CH edge
• p = p’

• until p = p0 //until it discovers first point again

Gift wrapping (1970)

p’

p0

• p0 = point with smallest y-coordinate (if more then one, pick right most)
• p = p0
• repeat

• for each point q (q != p)
• compute ccw-angle of q wrt previous edge

• let p’ = point with smallest angle
• output (p, p’) as CH edge
• p = p’

• until p = p0 //until it discovers first point again

Gift wrapping (1970)

p0

p

• p0 = point with smallest y-coordinate (if more then one, pick right most)
• p = p0
• repeat

• for each point q (q != p)
• compute ccw-angle of q wrt previous edge

• let p’ = point with smallest angle
• output (p, p’) as CH edge
• p = p’

• until p = p0 //until it discovers first point again

Gift wrapping (1970)

p0

p

p’

The gift wrapping algorithm : Classwork

• Simulate Gift Wrapping on an arbitrary (small) set of points
• consider how it works in degenerate cases

• Analysis: Running time? Express function of n and k, where k is the output size (number of
points on the convex hull)

• How small/large can k be for a set of n points?

• Show examples that trigger best/worst cases

• Based on this, discuss when gift-wrapping is a good choice

Summary

• Gift wrapping algorithm

• Runs in O(kn) time, where k is the size of the CH(P)

• Efficient if k is small:

• For k = O(1), it takes O(n)

• Not efficient if k is large:

• For k = O(n), gift wrapping takes O(n2)

• Faster algorithms are known

• Gift wrapping extends easily to 3D and for many years was the primary algorithm for
3D

Quickhull

left most point

right most point

upper hull

lower hull

Convex polygons: Properties

Quickhull (late 1970s)
• Similar to Quicksort (in some way)

Quickhull (late 1970s)

• Idea: start with 2 extreme points

a
b

Quickhull (late 1970s)

• CH = upper hull (CH of P1) + lower hull (CH of P2)

a
b

P1

P2

Quickhull (late 1970s)

• CH = upper hull (CH of P1) + lower hull (CH of P2)

a
b

P1

P2

Quickhull (late 1970s)

• CH = upper hull (CH of P1) + lower hull (CH of P2)

a
b

P1

P2

Quickhull (late 1970s)

• We’ll find the CH(P1) and CH(P2) separately

a
b

P1

P2

Quickhull (late 1970s)

• First let’s focus on P1

a
b

P1

Quickhull (late 1970s)

• For all points p in P1: compute dist(p, ab)

a
b

let’s ignore collinear
 points for now

Quickhull (late 1970s)

• Find the point c with largest distance (i.e. furthest away from ab)

a
b

c

let’s ignore collinear
 points for now

Quickhull (late 1970s)

• Find the point c with largest distance (i.e. furthest away from ab)

a
b

c

• Claim: c must be an extreme point (and thus on the CH of P1)
• Why?

let’s ignore collinear
 points for now

Quickhull (late 1970s)

• Discard all points inside triangle abc

a
b

c

let’s ignore collinear
 points for now

Quickhull (late 1970s)

• Discard all points inside triangle abc

a
b

c

let’s ignore collinear
 points for now

interior points

Quickhull (late 1970s)

• Recurse on the points left of ac and right of bc

a
b

c

let’s ignore collinear
 points for now

Quickhull (late 1970s)

a
b

c

• Recurse on the points left of ac and right of bc

Quickhull (late 1970s)

• Compute CH of P2 similarly

a
b

c

Quickhull (late 1970s)

• Quickhull (P)
• find a, b
• partition P into P1, P2
• return a + Quickhull(a,b, P1) + b + Quickhull(b,a,P2)

• Quickhull(a,b,P)
//invariant: P is a set of points all on the left of ab
• if P empty => return emptyset
• for each point p in P: compute its distance to ab
• let c = point with max distance
• let P1 = points to the left of ac
• let P2 = points to the left of cb
• return Quickhull(a,c,P1) + c + Quickhull(c,b,P2)

a
b

c

• Simulate Quickhull on a set of points and think how it works in degenerate cases

• Analysis:
• Write a recurrence relation for its running time
• What/when is the worst case running time ?
• What/when is the best case running time ?

• Argue that Quickhull’s average complexity is O(n) on points that are uniformly distributed.

a
b

c
Quickhull : Classwork

Summary

• Convex Hull algorithms so far

• Brute force: O(n3)

• Gift wrapping: O(kn)

• output-size sensitive: O(n) best case, O(n2) worst case

✦ by Chand and Kapur [1970]. Extends to 3D and to arbitrary
dimensions; for many years was the primary algorithms for
higher dimensions

• Quickhull: O(n2)

• Next

• Graham scan

• lower bound

• other approaches: incremental, divide-and-conquer

Graham scan

Graham scan (late 1960s)

• In late 60s an application at Bell Labs required the hull of 10,000 points, for which
a quadratic algorithm was too slow

• Graham developed an algorithm which runs in O(n lg n)

• It runs in one sort plus a linear pass!!

• Simple, intuitive, elegant and practical

• You’ll love it

Walk ccw along the boundary of a convex polygon

Only left turns!!!
Convex polygons: Properties

For any point p inside, the points on the boundary are in radial order around p

Walk ccw along the boundary of a convex polygon

Convex polygons: Properties

Graham scan (late 1960s)

Graham scan (late 1960s)

• Idea: start from a point p interior to the hull <——- we’ll think about how to get it later

p

p

Graham scan (late 1960s)

• Idea: start from a point p interior to the hull <——- we’ll think about how to get it later

 order all points by their ccw angle wrt p

Graham scan (late 1960s)

• Idea: start from a point p interior to the hull

 order all points by their ccw angle wrt p

p

q

Graham scan (late 1960s)

• Idea: start from a point p interior to the hull

 order all points by their ccw angle wrt p

p

angleq = atan (q.y - p.y)/(q.x - p.x)

q

Graham scan (late 1960s)

• Idea: traverse the points in this order a, b, c, d, e, f, g,…

p

ab
cd

e

f

g

h

i
j

k

l
m n

Graham scan (late 1960s)

• Idea: traverse the points in this order a, b, c, d, e, f, g,…
• initially we put a, b in S

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point c: what do we do with it?

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point c: what do we do with it?

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Is (c, b, a) convex?

Graham scan (late 1960s)

Now we read point c: what do we do with it?

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Is (c, b, a) convex?

YES!

Graham scan

Now we read point c: if (c+S) stays convex : add c to S

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Is (c, b, a) convex?

YES!

is c left of ab

Graham scan (late 1960s)

Now we read point d:

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

 //can’t add d, because (d,c,b,a) not convex

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (c, b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

 pop c; is d left of ab?

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

 pop c; is d left of ab?

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

 pop c; is d left of ab? YES ==> insert d in S

p

ab
cd

e

f

g

h

i
j

k

l
m n

S = (d, b, a)

Invariant:
we maintain S
as the CH of

the points traversed
so far

Graham scan (late 1960s)

In general, we read next point q:
• let b = head(S), a = next(b)
• if q is left of ab: add q to S

S = (b, a, ….) S = (q, b, a, ….)

p

b a

q

p

b a

q
push q

Graham scan (late 1960s)

In general, we read next point q:
• let b = head(S), a = next(b)
• if q is right of ab: pop b; repeat until q is left of ab, then add q to S

S = (b, a, ….) S = (q, a, ….)

p

b

a
q

pop b
push q

p

b
aq

How many vertices might need to be popped, when
looking at the next vertex q?

Graham scan (late 1960s)

Cascading pops

p

q

p

q

Graham scan: ANALYSIS

• Find interior point p0
• Sort all other points ccw around p0…..
• Initialize stack S = (p2, p1)
• for i=3 to n-1 do

• if pi is left of (second(S),first(S)):
• push pi on S

• else
• do

• pop S
• while pi is right of (second(S), first(S))
• push pi on S

• call them p1, p2, p3, …pn-1 in this order

note that we are ignoring some details,
such as what happens if first point p1
is not on the CH, and can the stack
ever run empty. We’ll see we can
avoid both.

Graham scan: ANALYSIS

• Find interior point p0
• Sort all other points ccw around p0…..
• Initialize stack S = (p2, p1)
• for i=3 to n-1 do

• if pi is left of (second(S),first(S)):
• push pi on S

• else
• do

• pop S
• while pi is right of (second(S), first(S))
• push pi on S

O(n) (we’ll think of it later)

Graham scan: ANALYSIS

• Find interior point p0
• Sort all other points ccw around p0…..
• Initialize stack S = (p2, p1)
• for i=3 to n-1 do

• if pi is left of (second(S),first(S)):
• push pi on S

• else
• do

• pop S
• while pi is right of (second(S), first(S))
• push pi on S

O(n) (we’ll think of it later)

O(n lg n)

Graham scan: ANALYSIS

• Find interior point p0
• Sort all other points ccw around p0…..
• Initialize stack S = (p2, p1)
• for i=3 to n-1 do

• if pi is left of (second(S),first(S)):
• push pi on S

• else
• do

• pop S
• while pi is right of (second(S), first(S))
• push pi on S

O(n) (we’ll think of it later)

O(n lg n)

How long does this take?

Graham scan: ANALYSIS

• Find interior point p0
• Sort all other points ccw around p0…..
• Initialize stack S = (p2, p1)
• for i=3 to n-1 do

• if pi is left of (second(S),first(S)):
• push pi on S

• else
• do

• pop S
• while pi is right of (second(S), first(S))
• push pi on S

O(n) (we’ll think of it later)

O(n lg n)

How long does this take?

every point is pushed once
and popped at most once => O(n)

Graham scan: Details

• How to find an interior point?

Graham scan: Details

• How to find an interior point?
• A simplification is to pick p0 as the lowest point

Graham scan: Details

• How to find an interior point?
• A simplification is to pick p0 as the lowest point

• initialize stack S = (p1, p0)

 //both are on CH and S will always contain at least 2 points

p0

p1

Graham scan: Class work

• Choose a set of “interesting” points and go through the algorithm

• Think what constitute degenerate cases. Does the algorithm handle them? If not,
how do you fix it?

Graham scan: Details

• Handling collinear-ities What happens when
you run on this input?

How can you fix it?

Graham scan: Details

• Handling collinear-ities

This is what we want:

Speeding up Graham scan

Speeding up Graham scan

Speeding up Graham scan

Speeding up Graham scan

Speeding up Graham scan

