Planar convex hulls (I)

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Convexity

A polygon P is convex if for any p, q in P, the segment $p q$ lies entirely in P.

Convexity

A polygon P is convex if for any p, q in P, the segment $p q$ lies entirely in P.

Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Convex Hull

Given a set P of points in 2D, their convex hull is the smallest convex polygon that contains all points of P

Convex Hull

The problem: Given a set P of points in 2D, describe an algorithm to compute their convex hull

Convex Hull

- One of the first problems studied in CG
- Many solutions
- simple, elegant, intuitive
- illustrate techniques for geometrical algorithms
- Lots of applications
- robotics, path planning, partitioning problems, shape recognition, separation problems, etc

Applications

- Shape analysis, matching, recognition
- approximate objects by their CH

Applications

- Path planning: find (shortest) collision-free path from start to end

Applications

- Path planning: find (shortest) collision-free path from start to end

- It can be shown that the shortest path follows CH (obstacle); also, it is the shorter of the upper path and lower path

Applications

- Partitioning problems
- does there exist a line separating two objects?

Applications

- Partitioning problems
- does there exist a line separating two objects?

NO

Applications

- Partitioning problems
- does there exist a line separating two objects?

Applications

- Partitioning problems
- does there exist a line separating two objects?

NO

Applications

- Find the two points in P that are farthest away

Applications

- Find the two points in P that are farthest away

Outline

- Properties of CH
- Algorithms for computing the $\mathrm{CH}(\mathrm{P})$
- Brute-force
- Gift wrapping (or: Jarviz march)
- Quickhull
- Graham scan
- Andrew's monotone chain
- Incremental
- Divide-and-conquer
- Can we do better?
- Lower bound for CH

Convexity: algebraic view

- A convex combination of points $p_{1}, p_{2}, \ldots p_{k}$ is a point of the form

$$
\mathrm{c}_{1} \mathrm{p}_{1}+\mathrm{c}_{2} \mathrm{p}_{2}+\ldots \mathrm{c}_{\mathrm{k}} \mathrm{p}_{\mathrm{k}} \text {, with } \mathrm{c}_{\mathrm{i}} \text { in }[0,1], \mathrm{c}_{1}+\mathrm{c}_{2}+\ldots+\mathrm{c}_{\mathrm{k}}=1
$$

a segment consists of all convex combinations of its 2 vertices

$$
\mathrm{c}_{1} \mathrm{P}_{1}+\mathrm{c}_{2} \mathrm{P}_{2}+\left(1-\mathrm{c}_{1}-\mathrm{c}_{2}\right) \mathrm{p}_{3}
$$

a triangle consists of all convex combinations of its 3 vertices

- The convex hull $\mathrm{CH}(\mathrm{P})=$ all convex combinations of points in P

Convex Hull

What exactly is on the CH ?

Convex Hull Variants

- Several types of convex hull output are conceivable
- all points on the convex hull in arbitrary order
- all points on the convex hull in boundary order
- only non-collinear points in arbitrary order
- only non-collinear points in boundary order
- It may seem that computing in boundary order is harder
- we'll see that identifying the points on the CH is Omega(n $\lg n)$
==> sorting is not dominant

Convex Hull:

Basic properties

Points on the CH are extreme

Points not on the CH are interior

Interior points

- A point p is called interior if p is contained in the interior of a triangle formed by three other points of P (or: in interior of a segment formed by two points).
- Claim: p interior $<==>\mathrm{p}$ not on the CH

Extreme points

- A point p is called extreme if there exists a line I through p, such that all the other points of P are on the same side of I (or on I)

Extreme points

- A point p is called extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

Extreme points

- A point p is called extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

Extreme points

- A point p is called extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

Extreme points

- A point p is called extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)

Extreme points

- A point p is called extreme if there exists a line I through p, such that all the other points of P are on the same side of I (and not on I)
- Claim: A point is on the $\mathrm{CH}<==>$ it is extreme

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)

Extreme edges

- An edge (p_{i}, p_{i}) is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points (p_{i}, p_{j}) form an edge on the CH iff edge (p_{i}, p_{j}) is extreme.

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points $\left(p_{i}, p_{j}\right)$ form an edge on the CH iff edge $\left(p_{i}, p_{j}\right)$ is extreme.

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points $\left(p_{i}, p_{j}\right)$ form an edge on the $C H$ iff edge $\left(p_{i}, p_{j}\right)$ is extreme.

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points $\left(p_{i}, p_{j}\right)$ form an edge on the CH iff edge $\left(p_{i}, p_{j}\right)$ is extreme.

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points $\left(p_{i}, p_{j}\right)$ form an edge on the $C H$ iff edge $\left(p_{i}, p_{j}\right)$ is extreme.

Extreme edges

- An edge $\left(p_{i}, p_{j}\right)$ is extreme if all the other points of P are on one side of it (or on)
- Claim: A pair of points $\left(p_{i}, p_{j}\right)$ form an edge on the CH iff edge $\left(p_{i}, p_{j}\right)$ is extreme.

Summary

- CH consists of extreme points and edges!
- point p is interior $<==>\mathrm{p}$ not on the CH
- point p is extreme <==> p on the CH
- A pair of points $\left(p_{i}, p_{j}\right)$ form an edge on the $\mathrm{CH}<==>$ edge $\left(p_{i}, p_{j}\right)$ is extreme
- First algorithm idea: find the CH by testing which edges are extreme

Brute force: Find extreme edges

Algorithm (input P)

- for all distinct pairs ($\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$)
- check if edge $\left(p_{i}, \mathrm{p}_{\mathrm{j}}\right)$ is extreme
- Analysis?

Gift wrapping (1970)

- Observation: CH consists of extreme edges, and each edge shares a vertex with next edge

How to find an extreme edge to start from?

Can you think of some points that are guaranteed to be in CH ?

- Claim
- point with minimum x-coordinate is extreme
- point with maximum x-coordinate is extreme
- point with minimum y-coordinate is extreme
- point with maximum y-coordinate is extreme
- Can you justify why?

Gift wrapping (1970)

Gift wrapping (1970)

- Start from bottom-most point
- if more then one, pick right most

Gift wrapping (1970)

- Start from bottom-most point
- if more then one, pick right most //find first edge. HOW ?

Gift wrapping (1970)

- Start from bottom-most point
- if more then one, pick right most //find first edge. HOW?

Gift wrapping (1970)

- Start from bottom-most point
- if more then one, pick right most //find first edge. HOW ?

Gift wrapping (1970)

- Start from bottom-most point
- if more then one, pick right most /******** find first edge ********/
- for each point q (q ! = p)
- compute slope of q wrt p
- let p' = point with smallest slope //claim: pp' is extreme edge
- output (p, p') as first edge

[^0]
Gift wrapping (1970)

- Start from bottom-most point
- if more then one, pick right most
/******** find first edge ********/
- for each point q (q ! = p)
- compute slope of q wrt p
- let p' = point with smallest slope //claim: pp' is extreme edge
- output (p, p') as first edge
- repeat from p'

Gift wrapping (1970)

- $p_{0}=$ point with smallest y-coordinate (if more then one, pick right most)
- $p=p_{0}$
- repeat
- for each point q (q ! $=p$)
- compute ccw-angle of q wrt previouss edge
- let $p^{\prime}=$ point with smallest angle
- output (p, p') as CH edge
- $p=p^{\prime}$
- until $p=p_{0} / /$ until it discovers first point again

Gift wrapping (1970)

- $p_{0}=$ point with smallest y-coordinate (if more then one, pick right most)
- $p=p_{0}$
- repeat
- for each point q (q != p)
- compute ccw-angle of q wrt previouss edge
- let $p^{\prime}=$ point with smallest angle
- output (p, p') as CH edge
- $p=p^{\prime}$
- until $p=p_{0} / /$ until it discovers first point again

Gift wrapping (1970)

- $p_{0}=$ point with smallest y-coordinate (if more then one, pick right most)
- $p=p_{0}$
- repeat
- for each point q (q != p)
- compute ccw-angle of q wrt previouss edge
- let $p^{\prime}=$ point with smallest angle
- output (p, p') as CH edge
- $p=p^{\prime}$
- until $p=p_{0} / /$ until it discovers first point again

The gift wrapping algorithm : Classwork

- Simulate Gift Wrapping on an arbitrary (small) set of points
- consider how it works in degenerate cases
- Analysis: Running time? Express function of n and k , where k is the output size (number of points on the convex hull)
- How small/large can k be for a set of n points?
- Show examples that trigger best/worst cases
- Based on this, discuss when gift-wrapping is a good choice

Summary

- Gift wrapping algorithm

- Runs in $\mathrm{O}(\mathrm{kn})$ time, where k is the size of the $\mathrm{CH}(\mathrm{P})$
- Efficient if k is small:
- For $k=O(1)$, it takes $O(n)$
- Not efficient if k is large:
- For $k=O(n)$, gift wrapping takes $O\left(n^{2}\right)$
- Faster algorithms are known
- Gift wrapping extends easily to 3D and for many years was the primary algorithm for 3D

Quickhull

Convex polygons: Properties

Quickhull (late 1970s)

- Similar to Quicksort (in some way)

Quickhull (late 1970s)

- Idea: start with 2 extreme points

Quickhull (late 1970s)

- $\mathrm{CH}=$ upper hull $\left(\mathrm{CH}\right.$ of $\left.\mathrm{P}_{1}\right)+$ lower hull $\left(\mathrm{CH}\right.$ of $\left.\mathrm{P}_{2}\right)$

Quickhull (late 1970s)

- $\mathrm{CH}=$ upper hull $\left(\mathrm{CH}\right.$ of $\left.\mathrm{P}_{1}\right)+$ lower hull $\left(\mathrm{CH}\right.$ of $\left.\mathrm{P}_{2}\right)$

Quickhull (late 1970s)

- $\mathrm{CH}=$ upper hull $\left(\mathrm{CH}\right.$ of $\left.\mathrm{P}_{1}\right)+$ lower hull $\left(\mathrm{CH}\right.$ of $\left.\mathrm{P}_{2}\right)$

Quickhull (late 1970s)

- We'll find the $\mathrm{CH}\left(\mathrm{P}_{1}\right)$ and $\mathrm{CH}\left(\mathrm{P}_{2}\right)$ separately

Quickhull (late 1970s)

- First let's focus on P1

Quickhull (late 1970s)

- For all points p in P1: compute dist(p, ab)

Quickhull (late 1970s)

- Find the point c with largest distance (i.e. furthest away from ab)

Quickhull (late 1970s)

- Find the point c with largest distance (i.e. furthest away from ab)

- Claim: c must be an extreme point (and thus on the CH of P1)
- Why?

Quickhull (late 1970s)

- Discard all points inside triangle abc

Quickhull (late 1970s)

let's ignore collinear points for now

- Discard all points inside triangle abc

Quickhull (late 1970s)

- Recurse on the points left of ac and right of bc

Quickhull (late 1970s)

- Recurse on the points left of ac and right of bc

Quickhull (late 1970s)

- Compute CH of P_{2} similarly

Quickhull (late 1970s)

- Quickhull (P)
- find a, b
- partition P into P1, P2

- return $a+$ Quickhull(a,b, P1) + b + Quickhull(b,a,P2)

- Quickhull(a,b,P)

//invariant: P is a set of points all on the left of ab

- if P empty => return emptyset
- for each point p in P : compute its distance to ab
- let $\mathrm{c}=$ point with max distance
- let P1 = points to the left of ac
- let P2 = points to the left of cb
- return Quickhull(a,c,P1) + c + Quickhull(c,b,P2)

Quickhull : Classwork

- Simulate Quickhull on a set of points and think how it works in degenerate cases
- Analysis:
- Write a recurrence relation for its running time
- What/when is the worst case running time ?
- What/when is the best case running time ?
- Argue that Quickhull's average complexity is $\mathrm{O}(\mathrm{n})$ on points that are uniformly distributed.

Summary

- Convex Hull algorithms so far
- Brute force: $O\left(n^{3}\right)$
- Gift wrapping: O(kn)
- output-size sensitive: $O(n)$ best case, $O\left(n^{2}\right)$ worst case
+ by Chand and Kapur [1970]. Extends to 3D and to arbitrary dimensions; for many years was the primary algorithms for higher dimensions
- Quickhull: O(n²)
- Next
- Graham scan
- lower bound
- other approaches: incremental, divide-and-conquer

Graham scan

Graham scan (late 1960s)

- In late 60s an application at Bell Labs required the hull of 10,000 points, for which a quadratic algorithm was too slow
- Graham developed an algorithm which runs in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- It runs in one sort plus a linear pass!!
- Simple, intuitive, elegant and practical
- You'll love it

Convex polygons: Properties

Walk ccw along the boundary of a convex polygon

Convex polygons: Properties

Walk ccw along the boundary of a convex polygon

For any point p inside, the points on the boundary are in radial order around p

Graham scan (late 1960s)

Graham scan (late 1960s)

- Idea: start from a point p interior to the hull we'll think about how to get it later

Graham scan (late 1960s)

- Idea: start from a point p interior to the hull we'll think about how to get it later order all points by their ccw angle wrt p

Graham scan (late 1960s)

- Idea: start from a point p interior to the hull order all points by their ccw angle wrt p

Graham scan (late 1960s)

- Idea: start from a point p interior to the hull order all points by their ccw angle wrt p

Graham scan (late 1960s)

- Idea: traverse the points in this order a, b, c, d, e, f, g,...

Graham scan (late 1960s)

- Idea: traverse the points in this order $a, b, c, d, e, f, g, \ldots$
- initially we put a, b in S

Graham scan (late 1960s)

Now we read point c: what do we do with it?

Graham scan (late 1960s)

Now we read point c: what do we do with it?

Graham scan (late 1960s)

Now we read point c: what do we do with it?

Graham scan

is c left of ab

Now we read point c: if (c+S) stays convex: add c to S

Graham scan (late 1960s)

Now we read point d:

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO
//can't add d, because (d,c,b,a) not convex

Invariant: we maintain S as the CH of the points traversed
so far

$$
S=(c, b, a)
$$

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO

$$
\text { pop c; is d left of } a b \text { ? }
$$

Invariant:
we maintain S as the CH of
the points traversed
so far

$$
S=(b, a)
$$

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO
pop c; is d left of ab?

Invariant:
we maintain S as the CH of
the points traversed
so far

$$
S=(b, a)
$$

Graham scan (late 1960s)

Now we read point d: is d left of bc? NO
pop c; is d left of ab? YES ==> insert d in S

Invariant: we maintain S as the CH of the points traversed
so far

$$
S=(d, b, a)
$$

Graham scan (late 1960s)

In general, we read next point q:

- let $b=\operatorname{head}(S), a=n e x t(b)$
- if q is left of ab: add q to S

$$
S=(b, a, \ldots .)
$$

$$
S=(q, b, a, \ldots)
$$

Graham scan (late 1960s)

In general, we read next point q:

- let $b=\operatorname{head}(S), a=n e x t(b)$
- if q is right of $a b:$ pop b; repeat until q is left of $a b$, then add q to S

$$
S=(b, a, \ldots)
$$

$$
S=(q, a, \ldots)
$$

How many vertices might need to be popped, when looking at the next vertex q ?

Graham scan (late 1960s)

Cascading pops

Graham scan: ANALYSIS

- call them $\mathrm{p}_{1}, \mathrm{p}_{2}, \mathrm{p}_{3}, \ldots \mathrm{p}_{\mathrm{n}-1}$ in this order
- Find interior point po
- Sort all other points ccw around po.....
- Initialize stack $S=\left(p_{2}, p_{1}\right)$
- for $\mathrm{i}=3$ to $\mathrm{n}-1$ do
- if p_{i} is left of (second(S),first(S)):
- push pi on S
- else
- do
- pop S
- while p_{i} is right of (second(S), first(S))
- push pi on S

Graham scan: ANALYSIS

- Find interior point po
$\longleftarrow \mathrm{O}(\mathrm{n})$ (we'll think of it later)

Graham scan: ANALYSIS

- Find interior point po
$\longleftarrow \quad \mathrm{O}(\mathrm{n})$ (we'll think of it later)
- Initialize stack $S=\left(p_{2}, p_{1}\right)$
- for i=3 to n-1 do
- if p_{i} is left of (second(S),first(S)):
- push pi on S
- else
- do
- pop S
- while p_{i} is right of (second(S), first(S))
- push pi on S

Graham scan: ANALYSIS

Graham scan: ANALYSIS

- Find interior point Do
- Sort all other points ccw around po.
- Initialize stack $S=\left(p_{2}, p_{1}\right)$
- for $\mathrm{i}=3$ to $\mathrm{n}-1$ do
- if p_{i} is left of (second(S),first(S)):
- push pi on S
- else
- do
- pop S
- while p_{i} is right of (second(S), first(S))
- push pi on S

How long does this take?
every point is pushed once and popped at most once $=>\mathrm{O}(\mathrm{n})$

Graham scan: Details

- How to find an interior point?

Graham scan: Details

- How to find an interior point?
- A simplification is to pick po as the lowest point

Graham scan: Details

- How to find an interior point?
- A simplification is to pick p_{0} as the lowest point
- initialize stack $S=(p 1, p 0)$
//both are on CH and S will always funtain at least 2 points

Graham scan: Class work

- Choose a set of "interesting" points and go through the algorithm
- Think what constitute degenerate cases. Does the algorithm handle them? If not, how do you fix it?

Graham scan: Details

- Handling collinear-ities

Graham scan: Details

- Handling collinear-ities

This is what we want:

Speeding up Graham scan

Speeding up Graham scan

Speeding up Graham scan

Speeding up Graham scan

Speeding up Graham scan

[^0]: /********** what next ? ${ }^{* * * * * * * * / ~}$

