
Finding the closest pair

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

Given an array of points in 2D, find the closest pair.

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

P

The distance between two points p and q is given by the Euclidian distance given
by the formula:

d(p,q) = (xp-xq)2 + (yp-yq)2

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

P

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

Given an array of points in 2D, find the closest pair.

Can we do better than O(n2)?

Given an array of points in 2D, find the closest pair.

Can we do better than O(n2)?

Hint: use divide-and-conquer

Divide-and-conquer refresher

Divide-and-conquer
mergesort(array A)

• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_A1 = mergesort(array A1)

• sorted_A2 = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_A1, sorted_A2)

• return result

Divide-and-conquer

Analysis: T(n) = 2T(n/2) + O(n) => O(n lg n)

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_A1 = mergesort(array A1)

• sorted_A2 = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_A1, sorted_A2)

• return result

DC(input P)
if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

return result

D&C, in general

Analysis: T(n) = 2T(n/2) + O(merge phase)

DC(input P)
if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

return result

D&C, in general

• if merge phase is O(n): T(n) = 2T(n/2) + O(n) => O(n lg n)

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase)

Closest pair, divide-and-conquer

• find vertical line that splits P in half

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• //…… NOW WHAT ???

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• find closest pair that straddles the line
• return the minimum of the three

Closest pair, divide-and-conquer

FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

1. Is this correct?

2. Running time?

The closest pair in P falls in one of three cases:

• Both points are in P1: then it is found by the recursive call on P1

• Both points are in P2: then it is found by the recursive call on P2

• One point is in P1 and one in P2: then it is found in the merge

phase, because the merge phase considers all such pairs

Is it correct?

FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Running time?

FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

T(n) = 2T(n/2) + O(n2)

solves to O(n2)

Can we do better?

Running time?

Refining the merge

Do we need to examine all pairs {p,q}, with p in P1, q in P2?

Which pairs {p,q} can be discarded?

p
q

d2

d1

Here’s a very simple observation..

• Notation: d = min {d1, d2}

• Observation: If there is a pair of points {p,q} with dist(p,q) < d, then both the

horizontal and vertical distance between p and q must be smaller than d.

p

q
< d

< d

< d

• Furthermore, if there is a pair of points {p,q} with dist(p,q) < d, then both p and
q must be within distance d from line L.

d2

d1

L
d d

• Notation: d = min {d1, d2}

Refining the merge

FindClosestPair(P)

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1=FindClosestPair(P1)

• d2=FindClosetPair(P2)

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’

• for each point q in P2’

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

• return mindist

Running time?

p
q

d2

d1

dd

Refining the merge

FindClosestPair(P)

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1=FindClosestPair(P1)

• d2=FindClosetPair(P2)

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’

• for each point q in P2’

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

• return min {d1, d2, mindist}

It’s possible that all n/2 points on either side lie inside the strip

p
q

d2

d1

dd

Running time?

• Show an example where the strip may contain Omega(n) points.

Refining the merge

• What does this imply for the running time?

p
q

d2

d1

d d

• Filtering the points in the strip is not enough..
• Note that the strip contains candidate pairs that could be within distance d of

each other horizontally
• We haven’t used yet that candidate pairs have to be within distance d of each

other vertically

Refining the merge

{p,q} not a candidate pair
because their vertical

distance > d

p

Refining the merge

d d

Any pair of points in P1
must be at least d away

Any pair of points in P2
must be at least d away

Points on both sides are “sparse”

Notation: d = min {d1, d2}
Not only candidate pairs must be in the d-by-d strip around line L, but….

Refining the merge

d d

Any pair of points in P1
must be at least d away

Any pair of points in P2
must be at least d away

Any square with side d
contains at most 4 points of P1

Any square with side d
contains at most 4 points of P2

Points on both sides are “sparse”

Notation: d = min {d1, d2}
Not only candidate pairs must be in the d-by-d strip around line L, but….

d d

• We don’t need to compute the distances from p to all points in P2’
• Consider a point p in P1’

p

d

d

How can we use this?

• All points of P2’ within distance d of p are
vertically above or below p by at most d

• => they must lie in a rectangle of size d x 2d

d d

• We don’t need to compute the distances from p to all points in P2’
• Consider a point p in P1’

p

• All points of P2’ within distance d of p are
vertically above or below p by at most d

• => they must lie in a rectangle of size d x 2d

d

d

How can we use this?

• How many points q of P2’ can there be in a
rectangle of size d x 2d? (knowing that any
pair of points in P2’ must be at least d away).

d d

• We don’t need to compute the distances from p to all points in P2’
• Consider a point p in P1’

p

d

d

How can we use this?

=> So for every p in P1’, we only need to check at
most 6 points of P2’

• All points of P2’ within distance d of p are
vertically above or below p by at most d

• => they must lie in a rectangle of size d x 2d

• How many points q of P2’ can there be in a
rectangle of size d x 2d? (knowing that any
pair of points in P2’ must be at least d away).

Refining the merge

p

p

Note: Assume no duplicate points.

y

• Traverse the points in P1’ and P2’ in increasing order of their y-coordinate
• Mimic the process of merging P1’ and P2’ in y-order
• Consider the next point p in y-order and let’s say it comes from P1’

• p will check only the points above it (following it in y-order) in P2’
• There can be at most 4 subsequent points in P2’ that are within d from p.

d d

Refining the merge

closestPair(P)
//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//merge

• let d = min{d1, d2}

• for all p in P1: if xp > xl - d: add p to Strip1

• for all p in P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p,

• compute its distance to the 5 points that come after it on the
other side of the strip

• if any of these is smaller than mindist, update mindist

• return mindist

d d

y

Refining the merge

closestPair(P)
//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//merge

• let d = min{d1, d2}

• for all p in P1: if xp > xl - d: add p to Strip1

• for all p in P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p,

• compute its distance to the 5 points that come after it on the
other side of the strip

• if any of these is smaller than mindist, update mindist

• return mindist

d d

y

Analysis: T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

• Brute force: O(n2)

• Divide-and-conquer with smart merge: O(n lg2n)

• We’d love to get rid of the extra lg n

Can we do better?
Why the lg2n? … because
merging needs to sort the

points in the strip
I need to get merging to

work in O(n) time

• Instead of sorting inside every merge, …
• Pre-sort P at the beginning

• sort by x-coord: PX <—— not necessary, but practical
• sort by y-coord: PY

• Let’s see what that means

closestPair(PX, PY)

Refining the refined merge

Refining the refined merge

closestPair(PX, PY)
//divide

• find vertical line L that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1) closestPair(P1X, P1Y)

• d2 = closestPair(P2) closestPair(P2X, P2Y)

//merge

• let d = min{d1, d2}

• for all p in P1: if xp > xl - d: add p to Strip1

• for all p in P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p,

• compute its distance to the 5 points that come after it on the
other side of the strip

• if any of these is smaller than mindist, update mindist

• return mindist

<— We need to get P1X, P1Y, P2X, P2Y

How?

Refining the refined merge

closestPair(PX, PY)
//divide

• find vertical line L that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1) closestPair(P1X, P1Y)

• d2 = closestPair(P2) closestPair(P2X, P2Y)

//merge

• let d = min{d1, d2}

• for all p in P1: if xp > xl - d: add p to Strip1

• for all p in P2: if xp < xl + d: add p to Strip2

• sort Strip1, Strip2 by y-coord

• initialize mindist=d

• merge Strip1, Strip2: for next point p,

• compute its distance to the 5 points that come after it on the
other side of the strip

• if any of these is smaller than mindist, update mindist

• return mindist

Analysis: T(n) = 2T(n/2) + O(n) => O(n lg n)

<— We need to get P1X, P1Y, P2X, P2Y

Traverse P1Y: if xp > xL-d: add p to Strip1

//Strip1, Strip2 are y-sorted!

Hooray!

• We have PX, PY
• We need to:

• Find the vertical line that splits P in half. How ?
• Get P1X, P2X. How ?
• Get P1Y, P2Y. How?

Almost there..

Refining the refined refined merge ?

• Just kidding ..

• Someone must have proven a lower bound of (n lg n) for this problemΩ

