Finding the closest pair

Computational Geometry [csci 3250]
Laura Toma
Bowdoin College

Given an array of points in 2D, find the closest pair.

Given an array of points in 2D, find the closest pair.

The distance between two points p and q is given by the Euclidian distance given by the formula:

$$
d(p, q)=\sqrt{\left(x_{p}-x_{q}\right)^{2}+\left(y_{p}-y_{q}\right)^{2}}
$$

Given an array of points in 2D, find the closest pair.

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$
- $d=\operatorname{distance}\left(\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}\right)$
- if ($d<$ mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points $\mathrm{p}_{\mathrm{i}}, \mathrm{p}_{\mathrm{j}}$
- $d=\operatorname{distance}\left(p_{i}, p_{j}\right)$
- if ($d<$ mindist): mindist=d
- Analysis:
- $O\left(n^{2}\right)$ pairs $==>O\left(n^{2}\right)$ time

Given an array of points in 2D, find the closest pair.

Brute force:

- mindist = VERY_LARGE_VALUE
- for all distinct pairs of points p_{i}, p_{j}
- $d=\operatorname{distance}\left(p_{i}, p_{j}\right)$
- if ($d<$ mindist): mindist=d
- Analysis:
- $O\left(n^{2}\right)$ pairs $==>O\left(n^{2}\right)$ time

Given an array of points in 2D, find the closest pair.

Can we do better than $\mathrm{O}\left(\mathrm{n}^{2}\right)$?

Given an array of points in 2D, find the closest pair.

Can we do better than $O\left(n^{2}\right)$?

Hint: use divide-and-conquer

Divide-and-conquer refresher

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else
//divide input A into two halves, A1 and A2
- $\mathrm{Al}=$ first half of A
- $A 2=$ second half of A
//sort recursively each half
- sorted_A1 = mergesort(array Al)
- sorted_A2 = mergesort(array A2)
//merge
- result $=$ merge_sorted_arrays(sorted_A1, sorted_A2)
- return result

Divide-and-conquer

mergesort(array A)

- if A has 1 element, there's nothing to sort, so just return it
- else
//divide input A into two halves, A1 and A2
- $A 1=$ first half of A
- $A 2=$ second half of A
//sort recursively each half
- sorted_A1 = mergesort(array Al)
- sorted_A2 = mergesort(array A2)
//merge
- result $=$ merge_sorted_arrays(sorted_A1, sorted_A2)
- return result

Analysis: $T(n)=2 T(n / 2)+O(n)=>O(n \lg n)$

D\&C, in general

DC(input P)

if P is small, solve and return
else
//divide
divide input P into two halves, P 1 and P 2
//recurse
result1 $=\mathrm{DC}(\mathrm{P} 1)$
result2 $=$ DC(P2)
//merge
do_something_to_figure_out_result_for_P
return result

Analysis: $T(n)=2 T(n / 2)+O$ (merge phase)

D\&C, in general

DC(input P)

if P is small, solve and return
else
//divide
divide input P into two halves, P 1 and P 2
//recurse
result1 $=\mathrm{DC}(\mathrm{P} 1)$
result2 $=$ DC(P2)
//merge
do_something_to_figure_out_result_for_P
return result

Analysis: $T(n)=2 T(n / 2)+O(m e r g e ~ p h a s e)$

- if merge phase is $O(n): \quad T(n)=2 T(n / 2)+O(n) \quad=>O(n \lg n)$
- if merge phase is $O(n \lg n): T(n)=2 T(n / 2)+O(n \lg n)=>O\left(n \lg ^{2 n}\right)$

Closest pair, divide-and-conquer

Closest pair, divide-and-conquer

- find vertical line that splits P in half

Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line

Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1

Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2

Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in Pl
- recursively find closest pair in P2
- //...... NOW WHAT ???

Closest pair, divide-and-conquer

- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- recursively find closest pair in P1
- recursively find closest pair in P2
- find closest pair that straddles the line
- return the minimum of the three

Closest pair, divide-and-conquer

FindClosestPair(P)

//basecase

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- $d_{1}=$ FindClosestPair(P1)
- $d_{2}=$ FindClosestPair(P2)
//compute closest pair across

1. Is this correct?
2. Running time?

- mindist=infinity
- for each p in P_{1}, for each q in P_{2}
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$
//return smallest of the three
- return $\min \left\{d_{1}, d_{2}\right.$, mindist $\}$

The closest pair in P falls in one of three cases:

- Both points are in P1: then it is found by the recursive call on P1
- Both points are in P2: then it is found by the recursive call on P2
- One point is in P1 and one in P2: then it is found in the merge phase, because the merge phase considers all such pairs

FindClosestPair(P)

//basecase

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- $d_{1}=$ FindClosestPair(P1)
- $\mathrm{d}_{2}=$ FindClosestPair(P2)
//compute closest pair across
- mindist=infinity
- for each p in P_{1}, for each q in P_{2}
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$
//return smallest of the three
- return $\min \left\{d_{1}, d_{2}\right.$, mindist $\}$

FindClosestPair(P)

//basecase

Running time?

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- $d_{1}=$ FindClosestPair(P1)
- $\mathrm{d}_{2}=$ FindClosestPair(P2)
//compute closest pair across
- mindist=infinity
- for each p in P_{1}, for each q in P_{2}
- compute distance $d(p, q)$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$
//return smallest of the three
- return $\min \left\{d_{1}, d_{2}\right.$, mindist $\}$

$$
\begin{aligned}
& T(n)=2 T(n / 2)+O\left(n^{2}\right) \\
& \text { solves to } O\left(n^{2}\right)
\end{aligned}
$$

Refining the merge

Do we need to examine all pairs $\{p, q\}$, with p in P_{1}, q in P_{2} ?
Which pairs $\{p, q\}$ can be discarded?

Here's a very simple observation..

- Notation: $\mathrm{d}=\min \left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$
- Observation: If there is a pair of points $\{p, q\}$ with $\operatorname{dist}(p, q)<d$, then both the horizontal and vertical distance between p and q must be smaller than d .

- Notation: $\mathrm{d}=\min \left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$
- Furthermore, if there is a pair of points $\{p, q\}$ with $\operatorname{dist}(p, q)<d$, then both p and q must be within distance d from line L.

Refining the merge

FindClosestPair(P)

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- d1=FindClosestPair(Pl)
- d2=FindClosetPair(P2)
- traverse P_{1} and select all points P_{1}^{\prime} in the strip
- traverse P_{2} and select all points P_{2}^{\prime} in the strip
- for each p in $P_{1}{ }^{\prime}$
- for each point q in P_{2}^{\prime}
- compute distance $\mathrm{d}(\mathrm{p}, \mathrm{q})$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$
- return mindist

Running time?

Refining the merge

FindClosestPair(P)

- if P has 1 point, return infinity
- if P has 2 points, return their distance
- else
- find vertical line that splits P in half
- let P1, P2 = set of points to the left/right of line
- dl=FindClosestPair(P1)
- d2=FindClosetPair(P2)
- traverse P_{1} and select all points P_{1}^{\prime} in the strip
- traverse P_{2} and select all points P_{2}^{\prime} in the strip
- for each p in $P_{1}{ }^{\prime}$
- for each point q in P_{2}^{\prime}

- compute distance $\mathrm{d}(\mathrm{p}, \mathrm{q})$
- mindist $=\min \left\{d_{1}, d_{2}, d(p, q)\right\}$
- return $\min \left\{d_{1}, d_{2}\right.$, mindist $\}$

It's possible that all n/2 points on either side lie inside the strip

Refining the merge

- Show an example where the strip may contain Omega(n) points.
- What does this imply for the running time?

Refining the merge

- Filtering the points in the strip is not enough..
- Note that the strip contains candidate pairs that could be within distance d of each other horizontally
- We haven't used yet that candidate pairs have to be within distance d of each other vertically

$\{p, q\}$ not a candidate pair because their vertical distance $>\mathrm{d}$

Refining the merge

Notation: $\mathrm{d}=\min \left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$

Not only candidate pairs must be in the d-by-d strip around line L, but....
Points on both sides are "sparse"

Any pair of points in P_{1} must be at least d away

Refining the merge

Notation: $\mathrm{d}=\min \left\{\mathrm{d}_{1}, \mathrm{~d}_{2}\right\}$

Not only candidate pairs must be in the d-by-d strip around line L, but....
Points on both sides are "sparse"

Any pair of points in P_{1} must be at least d away

> Any pair of points in P_{2} must be at least d away

Any square with side d contains at most 4 points of P_{2}

How can we use this?

- Consider a point p in $\mathrm{P}_{1}{ }^{\prime}$
- We don't need to compute the distances from p to all points in P_{2} '

- All points of P_{2} ' within distance d of p are vertically above or below p by at most d
- => they must lie in a rectangle of size $\mathrm{d} \times 2 \mathrm{~d}$

How can we use this?

- Consider a point p in $\mathrm{P}_{1}{ }^{\prime}$
- We don't need to compute the distances from p to all points in P_{2} '

- All points of P_{2} ' within distance d of p are vertically above or below p by at most d
- => they must lie in a rectangle of size dx 2d
- How many points q of P_{2} ' can there be in a rectangle of size $\mathrm{d} \times 2 \mathrm{~d}$? (knowing that any pair of points in P_{2} ' must be at least d away).

How can we use this?

- Consider a point p in $\mathrm{P}_{1}{ }^{\prime}$
- We don't need to compute the distances from p to all points in P_{2} '

- All points of P_{2} ' within distance d of p are vertically above or below p by at most d
- => they must lie in a rectangle of size $\mathrm{d} \times 2 \mathrm{~d}$
- How many points q of P_{2} ' can there be in a rectangle of size $\mathrm{d} \times 2 \mathrm{~d}$? (knowing that any pair of points in P_{2} ' must be at least d away).

=> So for every p in P_{1}, we only need to check at most 6 points of P_{2} '

Refining the merge

- Traverse the points in P_{1} ' and $\mathrm{P}_{2}{ }^{\prime}$ in increasing order of their y -coordinate
- Mimic the process of merging P_{1} ' and P_{2} ' in y-order
- Consider the next point p in y-order and let's say it comes from $P_{1}{ }^{\prime}$
- p will check only the points above it (following it in y-order) in P_{2} '
- There can be at most 4 subsequent points in P_{2} ' that are within d from p .

Refining the merge

closestPair(P)

//divide

- find vertical line I that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line
- $d_{1}=$ closestPair $\left(P_{1}\right)$
- $\mathrm{d}_{2}=$ closestPair $\left(\mathrm{P}_{2}\right)$
//merge
- let $d=\min \left\{d_{1}, d_{2}\right\}$
- for all p in $P_{1:}$ if $x_{p}>x_{1}-d$: add p to Strip1
- for all p in P_{2} if $x_{p}<x_{1}+d$: add p to Strip2
- sort Strip1, Strip2 by y-coord
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
- compute its distance to the 5 points that come after it on the
 other side of the strip
- if any of these is smaller than mindist, update mindist
- return mindist

Refining the merge

closestPair(P)

//divide

- find vertical line I that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line
- $d_{1}=$ closestPair $\left(P_{1}\right)$
- $d_{2}=$ closestPair $\left(P_{2}\right)$
//merge
- let $d=\min \left\{d_{1}, d_{2}\right\}$
- for all p in $P_{1:}$ if $x_{p}>x_{1}-d$: add p to Strip1
- for all p in P_{2} : if $x_{p}<x_{1}+d$: add p to Strip2
- sort Strip1, Strip2 by y-coord
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
- compute its distance to the 5 points that come after it on the
 other side of the strip
- if any of these is smaller than mindist, update mindist
- return mindist

Analysis: $T(n)=2 T(n / 2)+O(n \lg n)=>O\left(n \lg ^{2} n\right)$

- Brute force: O(n²)
- Divide-and-conquer with smart merge: $\mathrm{O}\left(\mathrm{n} \lg ^{2 n} \mathrm{n}\right)$

Can we do better?

- We'd love to get rid of the extra Ig n

Refining the refined merge

- Instead of sorting inside every merge, ...
- Pre-sort P at the beginning
- sort by x-coord: PX <—_ not necessary, but practical
- sort by y-coord: PY
closestPair(PX, PY)
- Let's see what that means

Refining the refined merge

closestPair(PX, PY)

//divide

- find vertical line L that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line $<-$ We need to get P1X, P1Y, P2X, P2Y
- $d_{1}=$ elosestPair $\left(P_{1}\right)$ closestPair(P1X, P1Y)
- $d_{2}=$ closestPair $\left(P_{z}\right)$ closestPair(P2X, P2Y)
//merge
- let $d=\min \left\{d_{1}, d_{2}\right\}$
- for all p in p_{1} if $x_{p} \rightarrow x_{1}$-d: add p to Stript How?
- for all p in p_{z} if $x_{p} \leftarrow x_{t}+d$: add p to Stripz
- sort Strip1, Strip2 by y-coord
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
- compute its distance to the 5 points that come after it on the other side of the strip
- if any of these is smaller than mindist, update mindist
- return mindis \dagger

Refining the refined merge

closestPair(PX, PY)

//divide

- find vertical line L that splits P in half
- let $P_{1}, P_{2}=$ set of points to the left/right of line $<-$ We need to get P1X, P1Y, P2X, P2Y
- $d_{1}=$ elosestPair $\left(P_{1}\right)$ closestPair(P1X, P1Y)
- $d_{2}=$ closestPair $\left(P_{Z}\right)$ closestPair(P2X, P2Y)
//merge
- let $d=\min \left\{d_{1}, d_{2}\right\} \quad$ Traverse P1Y: if $x_{p}>x_{L}-d:$ add p to Strip1
- for all p in $\mathrm{P}_{1:}$ if $x_{p} \rightarrow x_{t}$-d: add p to Stript
- for all p in p_{z} : if $x_{p} \leftarrow x_{t}+$ d: add p to Stripz
- sort Strip1, Strip2 by y-coord //Strip1, Strip2 are y-sorted!
- initialize mindist=d
- merge Strip1, Strip2: for next point p,
- compute its distance to the 5 points that come after it on the other side of the strip
- if any of these is smaller than mindist, update mindist
- return mindist

Analysis: $T(n)=2 T(n / 2)+O(n)=>(n \lg n)$
Hooray!

Almost there..

- We have PX, PY
- We need to:
- Find the vertical line that splits P in half. How ?
- Get P1X, P2X. How?
- Get P1Y, P2Y. How?

Refining the refined refined merge ?

- Just kidding ..
- Someone must have proven a lower bound of $\Omega(\mathrm{n} \lg \mathrm{n})$ for this problem

