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Path planning

•  Combinatorial  <—— last time  

•  Approximate   <——  next 



Combinatorial path planning 

• Idea: Compute free C-space combinatorially (= exact)
• Approach

• (robot, obstacles)  => (point robot,  C-obstacles) 
• Compute roadmap of free C-space 

• any path: trapezoidal decomposition or triangulation 
• shortest path: visibility graph 

• Comments
• Complete 
• Works beautifully in 2D and for some cases in 3D  

• Worst-case bound for combinatorial complexity of C-objects in 3D is high  
• Unfeasible/intractable for high #DOF 

• A complete planner in 3D runs in O(2n^#DOF)



You cannot compute C-free.

Imagine being blind-folded in a maze.



Approximate path planning 

• Idea: Since you can’t compute C-free, approximate it  

• Approaches 

• Graph search methods on grid-graphs 

• A*, weighted A*, D*, ARA*,… 

• Sampling-based  

• PRM-type  

• RRT-type  

• Potential field  

• Hybrid approaches



Approximate path planning 

The concept of completeness is relaxed 

• A planner is resolution complete:  
• finds a solution, if one exists, with probability —> 1 as the resolution of 

the sampling increases 

• A planner is probabilistically complete:   
• finds a solution, if one exists, with probability —> 1 as computation 

time increases



Grid-based planners with A*



Grid-based planners with A*



Grid-based graph search

• Sample C-space with uniform  grid/lattice    
• This essentially “pixelizes" the space (pixels/voxels in C-free) 
• (refined: quadtree/octree) 

• Graph is implicit 
• given by lattice topology: move +/-1 in each direction, possibly diagonals as well 
• successors(state s) 

• Search the graph for a path from start to end  
• Dijkstra/A* + variants   

• Variants: Graph can be pre-computed (occupancy grid), or computed  
incrementally 

• one-time path planning vs many times; static vs dynamic environment



Remember Dijkstra’s algorithm?

• Best-first search 

• priority(v) = d[v] = cost of getting from s to v 

• Dijkstra’s algorithm 

• Initialize:       d[v] = inf for all v, d[s] = 0 

•  Repeat: select the best vertex (=smallest) priority), and relax its edges



Dijkstra(vertex s)  

• initialize 

• d[v] = infinity for all v, d[s] = 0 

• for all v: PQ.insert(<v, d[v]>) 

• while PQ not empty  

• u = PQ.deleteMin()  

• mark u as done  //claim: d[u] is the SP(s,u) 

• for each edge (u,v):   

• if v not done, and if d[v] > d[u] + edge(u,v):  

• d[v] = d[u] + edge(u,v) 

• PQ.decreasePriority(v, d[v])

usually not implemented

no need to check if v is done,  
because once v is done,  

no subsequent relaxation can improve its d[]



Dijkstra(vertex s)  

• initialize 

• d[v] = infinity for all v, d[s] = 0 

• PQ.insert(<s, d[s]>) 

• while PQ not empty  

• u = PQ.deleteMin() 

• if u not done, for each edge (u,v):   

• if d[v] > d[u] + edge(u,v):  

• d[v] = d[u] + edge(u,v) 

• PQ.insert(<v, d[v]>) 

• mark u as done 

1. insert only the start

2. insert it 
(even if it’s already there)

• data structures
• for each vertex u, keep: done[u] and d[u] 
• PQ of (v, d[v])

3.because we avoid decreaseKey,  
PQ may contain the same vertex  

with different d[]. Only the first time  
we see u we process it



Dijkstra(vertex s)  

• initialize 

• d[v] = infinity for all v, d[s] = 0 

• PQ.insert(<s, d[s]>) 

• while PQ not empty  

• u = PQ.deleteMin() 

• if u not done, for each edge (u,v):   

• if isFree(v) and d[v] > d[u] + edge(u,v):  

• d[v] = d[u] + edge(u,v) 

• PQ.insert(<v, d[v]>) 

• mark u as done 

1. insert only the start

3. insert it 
(even if it’s already there)

2. isFree(v): is v in C-free What to do with a partially blocked cell?



• Dijkstra:  
• best-first search  
• priority(v) = d[v] =  distance from source 

• A* 
• priority f(v) = g(v) + h(v)

• g(v):  cost of getting from start to v 
• h(v): estimate of the cost from v to goal  

• Dijkstra  is   (A* with  h(v) = 0 ) 
• Admissibility  

• h(v) is “admissible”  if  h(v) < trueCost(v—>goal) 
• Theorem: If h() is admissible then  A* will return an optimal solution.  
• In general it may be hard to estimate h(v) 

•  path planning: h(v) = EuclidianDistance(v, goal)

Dijkstra and A*



• A* explores fewer vertices to get to the goal, compared to Dijkstra  
• The closer h(v) is to the trueCost(v), the more efficient 

• Example  
• https://www.youtube.com/watch?v=DINCL5cd_w0 

• Many A* variants  
• weighted A* 

• c x h()  ==> solution is no worse than (1+c) x optimal  
• anytime A* 

• use weighted A* to find a first solution ; then use A* with first solution as upper 
bound  to prune the search  

• real-time replanning 
• if the underlying graph changes,  it usually affects a small part of the graph  ==> 

don’t run search from scratch  
• D*: efficiently recompute SP every time the underlying graph changes 

Grid-based graphs: Dijkstra and A*

https://www.youtube.com/watch?v=DINCL5cd_w0


Graph search methods on grid-graphs

• Comments  
• Resolution complete (probability of finding a solution, if one exists, —> 1 

as the resolution of the grid increases) 
• The paths may be longer than true shortest path in C-space 
• Can interleave the construction with the search (ie construct only what is 

necessary) 

• simple to understand/implement 
• work in any dimension 

• size and quality of path depends on the discretization of the problem 
• suffers in high-d spaces => slow 



Sampling-based planners



Sampling-based planning

• Motivation 

• Combinatorial:   hard to construct C-obstacles exactly when D is high 

• Grid-based : space is too large when D is high

Idea: Be smart about how to choose the points to sample! 

• e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360 

• Goal: generate a sparse (sample-based) representation of free C-space



• Multiple-query planners

• Construct a graph (Roadmap) 

• Sample C-free and compute a roadmap that captures its 
connectivity 

• e.g. include PRM and variants  

• Use roadmap for any (start, end) pairs  

• Single-query  

• one start and one end state  

• construct a graph trying to connect start and end  

• e.g. include RRT and variants  

Sampling-based planning 



• The Roadmap 

• Sample C-free and compute a roadmap that captures its connectivity 
to the best of our (limited) knowledge 

• Roadmap construction phase 

• Start with a sampling of points in C-free and try to connect them  

• Two points are connected by an edge if a simple quick planner 
can find a path between them  

• This will create a set of connected components 

• Roadmap query phase 

• Use roadmap to find path between any two points 

Multiple-queries 



• Generic-Sampling-based-roadmap:  
• V = pstart + sample_points(C, n);     E = {} 
• for each point x in V:  

• for each neighbor y in neighbors(x, V): 

//try to connect x and y  
• if collisionFree(segment xy):  E = E + xy 

• return (V, E)

• Algorithms differ in  
• sample_points(C, n) :  how they select the initial random samples from C 

• return a set of n points arranged in a regular grid in C 
• return random n points 

• neighbors(x, V) : how they select the neighbors 
• return the k nearest neighbors of x in V 
• return the set of points lying in a ball centered at x of radius r 

• Often used:  samples arranged in a 2-dimensional grid, with nearest 4 neighbors (2d)

Multiple-queries 



Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Start with a random sampling of points in 
C-free  

• Roadmap stored as set of trees for space 
efficiency  

• trees encode connectivity, cycles 
don’t change it.  Additional edges are 
useful for shorter paths, but not for 
completeness  

• Augment roadmap by selecting additional 
sample points in areas that are estimated 
to be “difficult”

• Components   
• sampling C-free: random sampling  
• selecting the neighbors: within a ball of radius r 
• the local planner  delta(c,n): is segment cn collision free? 
• the heuristical measure of difficulty of a node 



Comments  

• One of the leading motion planning technique  

• Efficient, easy to implement, applicable to many types of scenes 

• Roadmap adjusts to the density of free space and is more connected around the obstacles  

• Size of roadmap can be adjusted as needed 

• More time spent in the “learning”  phase ==> better roadmap  

• Shown to be probabilistically complete 

• probability that the graph contains a valid solution —> 1 as number of samples 
increases 

• Embraced by many groups, many variants of PRM’s, used in many type of scenes/
applications.  

• PRM*,  FMT* (fast marching tree), … 

• Well-suited for high D planning

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)



Single-query: Incremental search planners

• Incrementally build increasingly finer  discretization of the configuration 
space, while trying to determine if a path exists at each step 



The RRT

• RRT (LaValle, 1998) 

• Idea: Incrementally grow a tree 
rooted at “start” outwards

https://www.cs.cmu.edu/afs/cs/academic/class/15494-s12/readigs/kuffner_icra2000.pdf

https://www.youtube.com/watch?v=MT6FyoHefgY

RRT demo

https://www.cs.cmu.edu/afs/cs/academic/class/15494-s12/readings/kuffner_icra2000.pdf
https://www.youtube.com/watch?v=MT6FyoHefgY


Single-query: Incremental search planners

• + Probabilistic complete 

• + Scales well to higher -d 

• + no discretization (sample from a continuous space) 

• - time may be unbounded



Timeline and developments 

• Dijkstra 1950s 

• A* 1960s 

• RRT 1998 

• RRT* 2010 

• … 



Sampling-based planning

• The main function to write  

isFree((x,y,…), Robot, Obstacles): would my robot , if placed in this 

configuration, intersect any obstacle 



R

R

C-space: 3D2D: robot can translate and rotate

configuration p:  (x, y, theta)

R(8,5,0)

R(8,15,45)

(8,5,0): free

(8,15,45): not free

How would you write: isFree((x,y,theta), Robot R, Obstacles S) ?



Demos



https://www.darpa.mil/about-us/timeline/darpa-urban-challenge

https://www.youtube.com/watch?v=Uqt_pRbR8rI&list=PLAwxTw4SYaPkCSYXw6-a_aAoXVKLDwnHKoverview of Darpa challenge, 3 min

https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://www.youtube.com/watch?v=Uqt_pRbR8rI&list=PLAwxTw4SYaPkCSYXw6-a_aAoXVKLDwnHK


• uses RRT (starting at minute 6)

• talk by Sertac Karaman in Darpa 2007 MIT team: https://www.youtube.com/watch?v=0fLSf3NO0-s

DARPA 2007, MIT team

https://www.youtube.com/watch?v=0fLSf3NO0-s


https://www.youtube.com/watch?v=Ob3BIJkQJEw


DARPA 2007, Stanford team

http://robots.stanford.edu/papers/junior08.pdf
• uses hybrid A*

https://www.youtube.com/watch?v=qXZt-B7iUyw

• Stanford’s A*-based planner in action

http://robots.stanford.edu/papers/junior08.pdf
https://www.youtube.com/watch?v=qXZt-B7iUyw


• Good read:   A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal Cáp, 

Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

Self-driving cars

• Both graph search and incremental tree-based  

• DARPA urban challenge:  

• CMU:  lattice graph in 4D (x,y, orientation, velocity); graph search with D*  

• Stanford:  incremental sparse tree of possible maneuvers, hybrid A* 

• Virginia Tech:  graph discretization of possible maneuvers, search with A* 

• MIT: variant of RRT with biased sampling 

https://arxiv.org/pdf/1604.07446.pdf

https://arxiv.org/pdf/1604.07446.pdf


https://www.youtube.com/watch?v=tlFVbHENPCI

https://www.youtube.com/watch?v=tlFVbHENPCI
https://www.youtube.com/watch?v=tlFVbHENPCI


https://www.youtube.com/watch?v=gP6MRe_IHFoComparison of RRT, PRM (MIT course project)

https://www.youtube.com/watch?v=gP6MRe_IHFo
https://www.youtube.com/watch?v=gP6MRe_IHFo


https://www.youtube.com/watch?v=QR3U1dgc5RE

https://www.youtube.com/watch?v=QR3U1dgc5RE
https://www.youtube.com/watch?v=QR3U1dgc5RE


Potential field methods  

• Idea [Latombe et al, 1992]  
• Define a potential field  
• Robot moves in the direction of steepest descent on potential function  

• Ideally potential function has global minimum at the goal, has no local 
minima, and is very large around obstacles  

• Algorithm outline:  
• place a regular grid over C-space 
• search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs


Potential field methods  

• Pro:  
• Framework can be adapted to any specific scene 

• Con:  
• can get stuck in local minima  
• Potential functions that are minima-free are known, but expensive to compute 

• Example:   RPP (Randomized path planner) is based on potential functions  
• Escapes local minima by executing random walks  
• Succesfully used  to  

• performs riveting ops on plane fuselages  
• plan disassembly operations for maintenance of aircraft engines 



Project 7 












