
Computational Geometry

csci3250

Laura Toma

Bowdoin College

Approximate path planning

Path planning

• Combinatorial <—— last time

• Approximate <—— next

Combinatorial path planning

• Idea: Compute free C-space combinatorially (= exact)
• Approach

• (robot, obstacles) => (point robot, C-obstacles)
• Compute roadmap of free C-space

• any path: trapezoidal decomposition or triangulation
• shortest path: visibility graph

• Comments
• Complete
• Works beautifully in 2D and for some cases in 3D

• Worst-case bound for combinatorial complexity of C-objects in 3D is high
• Unfeasible/intractable for high #DOF

• A complete planner in 3D runs in O(2n^#DOF)

You cannot compute C-free.

Imagine being blind-folded in a maze.

Approximate path planning

• Idea: Since you can’t compute C-free, approximate it

• Approaches

• Graph search methods on grid-graphs

• A*, weighted A*, D*, ARA*,…

• Sampling-based

• PRM-type

• RRT-type

• Potential field

• Hybrid approaches

Approximate path planning

The concept of completeness is relaxed

• A planner is resolution complete:
• finds a solution, if one exists, with probability —> 1 as the resolution of

the sampling increases

• A planner is probabilistically complete:
• finds a solution, if one exists, with probability —> 1 as computation

time increases

Grid-based planners with A*

Grid-based planners with A*

Grid-based graph search

• Sample C-space with uniform grid/lattice
• This essentially “pixelizes" the space (pixels/voxels in C-free)
• (refined: quadtree/octree)

• Graph is implicit
• given by lattice topology: move +/-1 in each direction, possibly diagonals as well
• successors(state s)

• Search the graph for a path from start to end
• Dijkstra/A* + variants

• Variants: Graph can be pre-computed (occupancy grid), or computed
incrementally

• one-time path planning vs many times; static vs dynamic environment

Remember Dijkstra’s algorithm?

• Best-first search

• priority(v) = d[v] = cost of getting from s to v

• Dijkstra’s algorithm

• Initialize: d[v] = inf for all v, d[s] = 0

• Repeat: select the best vertex (=smallest) priority), and relax its edges

Dijkstra(vertex s)

• initialize

• d[v] = infinity for all v, d[s] = 0

• for all v: PQ.insert(<v, d[v]>)

• while PQ not empty

• u = PQ.deleteMin()

• mark u as done //claim: d[u] is the SP(s,u)

• for each edge (u,v):

• if v not done, and if d[v] > d[u] + edge(u,v):

• d[v] = d[u] + edge(u,v)

• PQ.decreasePriority(v, d[v])

usually not implemented

no need to check if v is done,
because once v is done,

no subsequent relaxation can improve its d[]

Dijkstra(vertex s)

• initialize

• d[v] = infinity for all v, d[s] = 0

• PQ.insert(<s, d[s]>)

• while PQ not empty

• u = PQ.deleteMin()

• if u not done, for each edge (u,v):

• if d[v] > d[u] + edge(u,v):

• d[v] = d[u] + edge(u,v)

• PQ.insert(<v, d[v]>)

• mark u as done

1. insert only the start

2. insert it
(even if it’s already there)

• data structures
• for each vertex u, keep: done[u] and d[u]
• PQ of (v, d[v])

3.because we avoid decreaseKey,
PQ may contain the same vertex

with different d[]. Only the first time
we see u we process it

Dijkstra(vertex s)

• initialize

• d[v] = infinity for all v, d[s] = 0

• PQ.insert(<s, d[s]>)

• while PQ not empty

• u = PQ.deleteMin()

• if u not done, for each edge (u,v):

• if isFree(v) and d[v] > d[u] + edge(u,v):

• d[v] = d[u] + edge(u,v)

• PQ.insert(<v, d[v]>)

• mark u as done

1. insert only the start

3. insert it
(even if it’s already there)

2. isFree(v): is v in C-free What to do with a partially blocked cell?

• Dijkstra:
• best-first search
• priority(v) = d[v] = distance from source

• A*
• priority f(v) = g(v) + h(v)

• g(v): cost of getting from start to v
• h(v): estimate of the cost from v to goal

• Dijkstra is (A* with h(v) = 0)
• Admissibility

• h(v) is “admissible” if h(v) < trueCost(v—>goal)
• Theorem: If h() is admissible then A* will return an optimal solution.
• In general it may be hard to estimate h(v)

• path planning: h(v) = EuclidianDistance(v, goal)

Dijkstra and A*

• A* explores fewer vertices to get to the goal, compared to Dijkstra
• The closer h(v) is to the trueCost(v), the more efficient

• Example
• https://www.youtube.com/watch?v=DINCL5cd_w0

• Many A* variants
• weighted A*

• c x h() ==> solution is no worse than (1+c) x optimal
• anytime A*

• use weighted A* to find a first solution ; then use A* with first solution as upper
bound to prune the search

• real-time replanning
• if the underlying graph changes, it usually affects a small part of the graph ==>

don’t run search from scratch
• D*: efficiently recompute SP every time the underlying graph changes

Grid-based graphs: Dijkstra and A*

https://www.youtube.com/watch?v=DINCL5cd_w0

Graph search methods on grid-graphs

• Comments
• Resolution complete (probability of finding a solution, if one exists, —> 1

as the resolution of the grid increases)
• The paths may be longer than true shortest path in C-space
• Can interleave the construction with the search (ie construct only what is

necessary)

• simple to understand/implement
• work in any dimension

• size and quality of path depends on the discretization of the problem
• suffers in high-d spaces => slow

Sampling-based planners

Sampling-based planning

• Motivation

• Combinatorial: hard to construct C-obstacles exactly when D is high

• Grid-based : space is too large when D is high

Idea: Be smart about how to choose the points to sample!

• e.g. DOF= 6: 1000 x 1000 x 1000 x 360 x 360 x 360

• Goal: generate a sparse (sample-based) representation of free C-space

• Multiple-query planners

• Construct a graph (Roadmap)

• Sample C-free and compute a roadmap that captures its
connectivity

• e.g. include PRM and variants

• Use roadmap for any (start, end) pairs

• Single-query

• one start and one end state

• construct a graph trying to connect start and end

• e.g. include RRT and variants

Sampling-based planning

• The Roadmap

• Sample C-free and compute a roadmap that captures its connectivity
to the best of our (limited) knowledge

• Roadmap construction phase

• Start with a sampling of points in C-free and try to connect them

• Two points are connected by an edge if a simple quick planner
can find a path between them

• This will create a set of connected components

• Roadmap query phase

• Use roadmap to find path between any two points

Multiple-queries

• Generic-Sampling-based-roadmap:
• V = pstart + sample_points(C, n); E = {}
• for each point x in V:

• for each neighbor y in neighbors(x, V):

//try to connect x and y
• if collisionFree(segment xy): E = E + xy

• return (V, E)

• Algorithms differ in
• sample_points(C, n) : how they select the initial random samples from C

• return a set of n points arranged in a regular grid in C
• return random n points

• neighbors(x, V) : how they select the neighbors
• return the k nearest neighbors of x in V
• return the set of points lying in a ball centered at x of radius r

• Often used: samples arranged in a 2-dimensional grid, with nearest 4 neighbors (2d)

Multiple-queries

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

• Start with a random sampling of points in
C-free

• Roadmap stored as set of trees for space
efficiency

• trees encode connectivity, cycles
don’t change it. Additional edges are
useful for shorter paths, but not for
completeness

• Augment roadmap by selecting additional
sample points in areas that are estimated
to be “difficult”

• Components
• sampling C-free: random sampling
• selecting the neighbors: within a ball of radius r
• the local planner delta(c,n): is segment cn collision free?
• the heuristical measure of difficulty of a node

Comments

• One of the leading motion planning technique

• Efficient, easy to implement, applicable to many types of scenes

• Roadmap adjusts to the density of free space and is more connected around the obstacles

• Size of roadmap can be adjusted as needed

• More time spent in the “learning” phase ==> better roadmap

• Shown to be probabilistically complete

• probability that the graph contains a valid solution —> 1 as number of samples
increases

• Embraced by many groups, many variants of PRM’s, used in many type of scenes/
applications.

• PRM*, FMT* (fast marching tree), …

• Well-suited for high D planning

Probabilistic Roadmaps (Kavraki, Svetska, Latombe, Overmars et al , 1996)

Single-query: Incremental search planners

• Incrementally build increasingly finer discretization of the configuration
space, while trying to determine if a path exists at each step

The RRT

• RRT (LaValle, 1998)

• Idea: Incrementally grow a tree
rooted at “start” outwards

https://www.cs.cmu.edu/afs/cs/academic/class/15494-s12/readigs/kuffner_icra2000.pdf

https://www.youtube.com/watch?v=MT6FyoHefgY

RRT demo

https://www.cs.cmu.edu/afs/cs/academic/class/15494-s12/readings/kuffner_icra2000.pdf
https://www.youtube.com/watch?v=MT6FyoHefgY

Single-query: Incremental search planners

• + Probabilistic complete

• + Scales well to higher -d

• + no discretization (sample from a continuous space)

• - time may be unbounded

Timeline and developments

• Dijkstra 1950s

• A* 1960s

• RRT 1998

• RRT* 2010

• …

Sampling-based planning

• The main function to write

isFree((x,y,…), Robot, Obstacles): would my robot , if placed in this

configuration, intersect any obstacle

R

R

C-space: 3D2D: robot can translate and rotate

configuration p: (x, y, theta)

R(8,5,0)

R(8,15,45)

(8,5,0): free

(8,15,45): not free

How would you write: isFree((x,y,theta), Robot R, Obstacles S) ?

Demos

https://www.darpa.mil/about-us/timeline/darpa-urban-challenge

https://www.youtube.com/watch?v=Uqt_pRbR8rI&list=PLAwxTw4SYaPkCSYXw6-a_aAoXVKLDwnHKoverview of Darpa challenge, 3 min

https://www.darpa.mil/about-us/timeline/darpa-urban-challenge
https://www.youtube.com/watch?v=Uqt_pRbR8rI&list=PLAwxTw4SYaPkCSYXw6-a_aAoXVKLDwnHK

• uses RRT (starting at minute 6)

• talk by Sertac Karaman in Darpa 2007 MIT team: https://www.youtube.com/watch?v=0fLSf3NO0-s

DARPA 2007, MIT team

https://www.youtube.com/watch?v=0fLSf3NO0-s

https://www.youtube.com/watch?v=Ob3BIJkQJEw

DARPA 2007, Stanford team

http://robots.stanford.edu/papers/junior08.pdf
• uses hybrid A*

https://www.youtube.com/watch?v=qXZt-B7iUyw

• Stanford’s A*-based planner in action

http://robots.stanford.edu/papers/junior08.pdf
https://www.youtube.com/watch?v=qXZt-B7iUyw

• Good read: A Survey of Motion Planning and Control Techniques for Self-driving Urban Vehicles, by Brian Paden, Michal Cáp,

Sze Zheng Yong, Dmitry Yershov, and Emilio Frazzoli

Self-driving cars

• Both graph search and incremental tree-based

• DARPA urban challenge:

• CMU: lattice graph in 4D (x,y, orientation, velocity); graph search with D*

• Stanford: incremental sparse tree of possible maneuvers, hybrid A*

• Virginia Tech: graph discretization of possible maneuvers, search with A*

• MIT: variant of RRT with biased sampling

https://arxiv.org/pdf/1604.07446.pdf

https://arxiv.org/pdf/1604.07446.pdf

https://www.youtube.com/watch?v=tlFVbHENPCI

https://www.youtube.com/watch?v=tlFVbHENPCI
https://www.youtube.com/watch?v=tlFVbHENPCI

https://www.youtube.com/watch?v=gP6MRe_IHFoComparison of RRT, PRM (MIT course project)

https://www.youtube.com/watch?v=gP6MRe_IHFo
https://www.youtube.com/watch?v=gP6MRe_IHFo

https://www.youtube.com/watch?v=QR3U1dgc5RE

https://www.youtube.com/watch?v=QR3U1dgc5RE
https://www.youtube.com/watch?v=QR3U1dgc5RE

Potential field methods

• Idea [Latombe et al, 1992]
• Define a potential field
• Robot moves in the direction of steepest descent on potential function

• Ideally potential function has global minimum at the goal, has no local
minima, and is very large around obstacles

• Algorithm outline:
• place a regular grid over C-space
• search over the grid with potential function as heuristic

https://www.youtube.com/watch?v=r9FD7P76zJs

https://www.youtube.com/watch?v=r9FD7P76zJs

Potential field methods

• Pro:
• Framework can be adapted to any specific scene

• Con:
• can get stuck in local minima
• Potential functions that are minima-free are known, but expensive to compute

• Example: RPP (Randomized path planner) is based on potential functions
• Escapes local minima by executing random walks
• Succesfully used to

• performs riveting ops on plane fuselages
• plan disassembly operations for maintenance of aircraft engines

Project 7

