Combinatorial motion planning

Computational Geometry
csci3250
Laura Toma
Bowdoin College

Problem

Motion Planning

Input:

- a robot R
- start and end position
- a set of obstacles $\mathrm{S}=\left\{\mathrm{O}_{1}, \mathrm{O}_{2}, \ldots\right\}$

Find a path from start to end (that optimizes some objective function).

Parameters:

- geometry of obstacles (polygons, disks, convex, non-convex, etc)
- geometry of robot (point, polygon, disc)
- robot movement —how many degrees of freedom (dof); 2d, 3d
- objective function to minimize (euclidian distance, nb turns, etc)
- static vs dynamic environment
- exact vs approximate path planning
- known vs unknown map

Motion Planning

Ideally we want a planner to be complete and optimal.

- A planner is complete:
- it always finds a path when a path exists
- A planner is optimal:
- it finds an optimal path (wrt objective function)

Approaches

- Combinatorial (exact)
- Used for 2D path planning
- Idea:
- Compute an exact representation of free space and a graph that represents the free space
- Find a path using the graph
- Approximate
- sampling-based, search based, space decomposition, probabilistic, potential functions

2D path planning problems

- point robot moving inside an arbitrary polygon
- point robot moving among (arbitrary) polygons
- disk robot moving among (arbitrary) polygons
- polygonal robot moving among (arbitrary) polygons
- translation, translation+rotation
- robot with arms and articulation

Overview: this week

Combinatorial motion planning in 2D

- Point robot moving among polygonal obstacles in 2D
- trapezoidal decomposition
- visibility graph
- Polygonal robot moving among polygonal obstacles in 2D
- C-space, C-obstacles, ...
- translation only
- translation + rotation

Point robot moving among polygonal obstacles in 2D

Input:

- start and end position
- a set of polygonal obstacles $S=\left\{O_{1}, O_{2}, \ldots\right\}$

Find a path from start to end.

Point robot in 2D
start

Point robot in 2D

General idea

- Compute a representation of free space
- Build a graph of free space
- Search graph to find path

(screenshot from O'Rourke)
- Planning a path for point robot in 2D is reduced to graph search
- Questions: How? How long? Size?

Compute a trapezoid decomposition of free space and the corresponding graph.

Point robot in 2D

General idea

- Compute a representation of free space

Has size $O(n)$ and can be computed in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time

- Build a graph of free space
- Search graph to find path

- BFS

Point robot in 2D

Result: Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in total. We can pre-process S in $O(n \lg n)$ expected time such that, between any start and goal position, a collision-free path for R can be computed in $\mathrm{O}(\mathrm{n})$ time, if it exists.

Is this complete?

Is this optimal?

Point robot in 2D

Result: Let R be a point robot moving among a set of polygonal obstacles in 2D with n edges in total. We can pre-process S in $O(n \lg n)$ expected time such that, between any start and goal position, a collision-free path for R can be computed in $\mathrm{O}(\mathrm{n})$ time, if it exists.

Is this complete?
YES

Is this optimal?
No

Classwork

Show that the trapezoid map is not optimal by giving a scene where it dos not give the optimal (shortest) path

Point robot in 2D

What if we wanted the shortest path?

Point robot in 2D with shortest paths

Theorem: Any shortest path among a set S of disjoint polygonal obstacles

1. is a polygonal path (that is, not curved)
2. its vertices are the vertices of S.

How to find a shortest path from start to end?

Point robot in 2D with shortest paths

- Idea: Build the visibility graph (VG)
- represents all possible ways to travel between the vertices of the obstacles

- Claim: any shortest path must be a path in the VG

Point robot in 2D with shortest paths

Algorithm

- Compute visibility graph
- $\mathrm{V}=$ \{set of vertices of obstacles $+p_{\text {start }}+$ Pend $\}$
- $E=\{$ all pairs of vertices (u, v) such that uv are visible to each other
- SSSP (Dijkstra) in VG from start to finish
- Questions to answer
- What's the size of the VG?
- How to compute it and how long?

Classwork

- Consider a scene where the total size of the obstacles is n. Come up with an example that triggers smallest/largest number of edges in VG (up to a constant factor).

Classwork

- Come up with a straightforward algorithm to compute VG and analyze it

Classwork

- How long does it take to run Dijkstra's algorithm on VG?

Point robot in 2D with shortest paths

- Complexity of VG
- $V_{v g}=O(n), \quad E_{v g}=O\left(n^{2}\right) \quad<------\quad$ can have quadratic size
- Computing VG
- naive: for each edge, check if intersects any obstacle. $O\left(n^{3}\right)$
- improved: $O(n \lg n)$ per vertex, $O\left(n^{2} \lg n\right)$ total

- Dijkstra on VG: $O\left(E_{v g} \lg n\right)=O\left(n^{2} \lg n\right)$

Summary

Optimal planning for point robot in 2D

- Compute visibility graph
- SSSP (Dijkstra) in VG
$<----O\left(n^{2} \lg n\right)$
<----- $O\left(E_{v g} \lg n\right)$

Theorem: Given a set of polygonal obstacles with n edges, a shortest path between two points can be computed in $\mathrm{O}\left(\mathrm{Evg} \lg ^{\mathrm{n}}\right)=\mathrm{O}\left(\mathrm{n}^{2} \lg \mathrm{n}\right)$ time .

Computing the visibility graph

Improved computation of VG

- For every vertex v: compute all vertices visible from vin $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$

radial sweep

Improved computation of VG

- Radial sweep: rotate a ray centered at v
- Events: vertices of polygons (obstacles) sorted in radial order
- for = angles, sorted by distance from v

Improved computation of VG

- Radial sweep: rotate a ray centered at v
- Events: vertices of polygons (obstacles) sorted in radial order
- for = angles, sorted by distance from v

Improved computation of VG

Active structure (AS) stores all the edges that intersect the sweep line, ordered by distance from v

Improved computation of VG

w visible if vw does not intersect the interior of any obstacle

Improved computation of VG

RadialSweep(polygon vertices V , vertex p)

- sort V radially from p , and secondarily by distance from p
- initialize AS with all edges that intersect the horizontal ray from p
- For each vertex v in sorted order:
- determine if v is visible from p
- figure out if the edges incident to v are above/below the sweep line.

If above -> insert edge in AS. If below => delete edge from AS

Runs in $O(n \lg n)$ time

Is vertex x visible from p ?

some cases

NOT visible:

If there is any edge in AS left of x, whose interior intersects the line

Is vertex x visible from p ?

Let x^{\prime} be the edge just before x in the AS, $\mathrm{x}^{\prime}=$ AS. predecessor (x)

x 'is a vertex and it's not visible

x'is a vertex and it's visible

Is vertex x visible from p ?

- check the event just before x in AS (AS. predecessor(x)). Call this x^{\prime}.
- if x^{\prime} is an edge whose interior intersects sweep line $=>x$ is not visible
- if x ' has a vertex on the sweep line then:
- if x^{\prime} is not visible $=>x$ not visible
- if x^{\prime} is visible $=>x$ visible, unless they are both on the same polygon

Computing the visibility graph

END

Summary

- Point robot moving among polygonal obstacles
- Not optimal planning:
- compute the trapezoid decomposition of free space and a graph that represents it: $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- BFS in this graph in $\mathrm{O}(\mathrm{n})$ time
- Optimal (shortest paths) planning:
- Compute visibility graph <------ O(n² Ig n)
-SSSP (Dijkstra) in VG <------ O(Evg Ig n)

Motion planning via Visibility Graph

+ Optimal and complete
+VG needs to be computed only once, so we can think of it as preprocessing
- VG may be large, $\Omega\left(n^{2}\right)$

\uparrow
path planning via VG doomed to quadratic complexity

Some history..

- $O\left(n^{2}\right)$ algorithm (also with a radial sweep)
- Quadratic barrier broken by Joe Mitchell: SP of a point robot moving in 2D can be computed in $O\left(n^{1.5+\epsilon}\right)$
- Continuous Dijkstra approach: SP of a point robot moving in 2D can be computed in $\mathrm{O}(\mathrm{n} \lg \mathrm{n}+\mathrm{k})$ [Hershberger and Suri 1993]
- Special cases can be solved faster:
- e.g. SP inside a simple polygon w/o holes: $O(n)$ time

Visibility Graph in 3D ?

- Inflection points of SP are not restricted to vertices of S , can be inside edges
- Shortest paths in 3D much harder
- Computing 3D shortest paths among polyhedral obstacles is NP-complete
- Complete and optimal planning in 3D is hopeless

VG does not generalize to 3D

Where are we?

2D path planning problems

- point robot moving inside an arbitrary polygon
- point robot moving among arbitrary polygons
- disk robot moving among arbitrary polygons
- polygonal robot moving among arbitrary polygons
- translation, translation+rotation
- robot with arms and articulation

Polygonal robot moving among obstacles in 2D

Convex polygon moving in 2D

- How can the robot move?
- Translation only
- Translation + rotation

screenshot from internet

Work/physical space

- Space where robot moves around

translation only

A placement of robot is specified by the degrees of freedom (dof) of the robot

- Example:
$R(x, y)$
$R(x, y, \theta)$

translation + rotation

translation only

Configuration space (C-space)

- C-space: The parametric space of the robot = space of all possible placements of the robot
- A point in C-space corresponds to placement of the robot in physical space
- Examples:
$2 D$, translation only $<->R(x, y)$
2D, transl.+ rot. <-> $R(x, y$, theta $)$

translation + rotation

Physical Space and C-space

robot	physical space	C-space
polygon, (translation only) $\mathrm{R}(\mathrm{x}, \mathrm{y})$		2D

Physical Space and C-space

Physical Space and C-space

robot	physical space	C-space
$\begin{gathered} \begin{array}{c} \text { polygon, } \\ \text { (translation only) } \end{array} \end{gathered} \quad R(x, y)$	2D	2 D
$\begin{aligned} & \text { polygon, } R(x, y \text {, theta) } \\ & \text { (translation + rotations) } \end{aligned}$	2D	3D
polygon (translation, rotations)	3D	6D

Physical Space and C-space

robot	physical space	C-space
polygon, (translation only) polygon, (translation + rotations) polygon (translation, rotations)	2D	2D
2D		3D
3D		6D
3D		\#DOF

Path planning in C-space

- Any path for R corresponds to a path for R in C -space
- Path planning => path planning in C-space

Free C-space

A point (x, y) is in free C-space if placing $R(x, y)$ does not intersect the obstacles

Forbidden C-space

A point (x, y) is in forbidden C -space if it is not in free C -space.

Extended obstacles or C-obstacles

- Given obstacle O and robot R
- C-obstacle $=$ the placements of R that cause intersection with O

Extended obstacles or C-obstacles

- Given obstacle O and robot R
- C -obstacle $=$ the placements of R that cause intersection with O

Extended obstacles or C-obstacles

- Given obstacle O and robot R
- C-obstacle $=$ the placements of R that cause intersection with O

Extended obstacles or C-obstacles

- Given obstacle O and robot R
- C -obstacle $=$ the placements of R that cause intersection with O

Class work

- Consider a rectangular robot. Draw a small set of obstacles such that their Cobstacles overlap.

Class work

- Consider a rectangular robot. Draw a scene of obstacles such that free physical space is not disconnected, but the the free C-space is disconnected.

Class work

Show the corresponding C-obstacles for a disc robot.

Class work

obstacle
extended obstacle

Class work

translation only

Show the corresponding C-obstacle.

Polygonal robot translating in 2D

Polygonal robot translating in 2D

Algorithm

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space
//problem is reduced to a point robot
//moving in free C-space
- Compute a trapezoidal map of free Cspace
- Use it to compute a roadmap of free space

How and how fast can this be done?

How to compute C-obstacles?

Minkowski sum

- Let A, B two sets of points in the plane
- Define $A \oplus B=\{x+y \mid x$ in A, y in $B\} \longleftarrow$ Minkowski sum

- Interpretation: consider set A to be centered at the origin. Then $A \oplus B$ represents many copies of A, translated by y, for all y in B; i.e. place a copy of A centered at each point of B.

A translated by y

$\mathrm{B} \oplus \mathrm{A}$

Minkowski sum

- $A \oplus B$: Slide A so that the center of A traces the edges of B

C-obstacles as Minkowski sums

- Consider a robot R with the reference in the lower left corner

C-obstacles as Minkowski sums

- Consider a robot R with the reference in the lower left corner

$B \oplus R$ is not quite the C-obstacle of B

C-obstacles as Minkowski sums

-R: R reflected by origin

The C-obstacle of B is $B \oplus(-R(0,0))$.

Slide so that R touches the obstacle

Slide so that centerpoint of $-R$ traces the edges of obstacle

Slide so that R touches the obstacle

Slide so that centerpoint of -R traces the edges of obstacle

R

How do we compute Minkowski sums?

How to compute Minkowski sums?

CASE 1: Convex robot with convex polygon

CASE 1: Convex robot with convex polygon

- Each edge in R, O will cause an edge in R+O
- R+O has O(m+n) edges

CASE 1: Convex robot with convex polygon

- To compute: Place -R at all vertices of O and compute convex hull
- Possible to compute in $\mathrm{O}(m+n)$ time by walking along the boundaries of R and O

In general...

2D

- convex + convex polygons
- The Minkowski sum of two convex polygons with n , and m edges respectively, is a convex polygon with $n+m$ edges and can be computed in $O(n+m)$ time.
- convex + non-convex polygons
- Triangulate and compute Minkowski sums for each pair [convex polygon, triangle], and take their union
- Size of Minkowski sum: $O(m+3)$ for each triangle $=>O(m n)$
- non-convex + non-convex polygons:
- size of Minkowski sum: $O\left(n^{2} m^{2}\right)$

3D

- it gets worse . . .

Back to planning

Polygonal robot translating in 2D

Algorithm
Complete, non optimal.

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space
//problem is reduced to a point robot //moving in free C-space
- Compute a trapezoidal map of free Cspace
- Use it to compute a roadmap of free space

How fast can this be done?

Polygonal robot translating in 2D

Algorithm
Complete, non optimal.

- For each obstacle O, compute the corresponding C-obstacle
- Compute the union of C-obstacles
- Compute its complement. That's the free C-space
//problem is reduced to a point robot //moving in free C-space
- Compute a trapezoidal map of free Cspace
- Use it to compute a roadmap of free space

How fast can this be done?

For a convex robot of $\mathbf{O}(1)$ size

- Free C-space can be computed in $O(n \lg 2 n)$ time.
- With $O(n \lg 2 n)$ time preprocessing, a collision-free path can be found for any start and end in O(n) time.

So far we've considered only translation

\downarrow

Next: Translation + Rotation

Polygonal robot in 2D with rotations

- Physical space is 2D
- A placement is specifies by 3 parameters: $R(x, y$, theta $)==>C$-space is 3D.

Polygonal robot in 2D with rotations

- We'd like to extend the same approach:

Reduce to point robot moving among C-obstacles in C-space.

- Compute C-obstacles
- Compute free space as complement of union of C-obstacles
- Decompose free space into simple cells
- Construct a graph(roadmap)
- BFS on roadmap

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- What does a C-obstacle look like when rotations are allowed?

Polygonal robot in 2D with rotations

- Imagine moving a vertical plane through C-space. Each position of the plane will correspond to a fixed theta.
- Each cross-section of a C-obstacle is a Minkowski sum $O \oplus-R(0,0, \theta)$
- => twisted pillar

A C-obstacle is a 3D shape.

the closest i could find ..

Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for convex, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ for non-convex robot

Polygonal robot in 2D with rotations

What's known:

- C-space is 3D
- Boundary of free space is curved, not polygonal.
- Combinatorial complexity of free space is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for convex, $\mathrm{O}\left(\mathrm{n}^{3}\right)$ for non-convex robot
- Extend same approach:

1. Compute C-obstacles and C-free
2. Compute a decomposition of free space into simple cells
3. Construct a roadmap
4. BFS on roadmap

Polygonal robot in 2D with rotations

- Difficult to construct a good cell decomposition for curved 3D space
- One possible approach:
- Discretize rotation angle and compute a finite number of slices, one for each angle
- For a fixed angle: you got translational motion planning
- Construct a trapezoidal decomposition for each slice and its roadmap
- Link them into a 3D roadmap: Add "vertical" edges between slices to allow robot to move up/down between slices; these correspond to rotational moves.
- Example: Consider two angles a and b. If placement (x, y) is in free space in slice a, and (x, y) is in free space in slice b, then the 3D roadmap should contain a vertical edge between slice $a \operatorname{and} b$ at that position
- Is this complete?

Combinatorial motion planning : Summary

- Idea: Compute free C-space combinatorially (exactly)
- Point robot moving among polygonal obstacles in 2D
- trapezoidal decomposition
- visibility graph
- Polygonal robot moving among polygonal obstacles in 2D
- C-space, C-obstacles, ...
- translation only, translation + rotation
- Comments
- Complete
- Works beautifully in 2D and for some (simple) cases in 3D
- Worst-case bound for combinatorial complexity of C-obstacles in 3D is high
- Unfeasible/intractable for high \#DOF
- A complete planner in 3D runs in $\mathrm{O}\left(2^{\text {n^\#DOF }}\right)$

Project preview

1. Generate a scene consisting of multiple polygonal obstacles and a start and end position. Have a pre-set scene when you start, but also allow the user to change the start and end position for the same scene, and to reset the whole scene and start from scratch entering polygons.
2. Compute and render the visibility graph.
3. Run Dijkstra's algorithm on the VG and render the resulting path (for e.g. in a different color and different line width).

Additional exercises

Consider arbitrary two points inside this polygon, and draw the shortest path between them. What can you claim about the shortest path inside a polygon? (in terms of its intermediate points)

Consider a point s as below.
Draw the region of the polygon that contains all points p such that the shortest path from s to p consists of the straight line segment sp.

Consider a point s as below.
Draw the region of the polygon that contains all points p such that the shortest path from s to p consists of the straight line segment sa plus the straight line segment ap.

Consider a point s as below.
Draw the shortest path map of s.

