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screenshot from: ai.stanford.edu/~latombe/cs26n/2012/slides/point-robot-bug.ppt



Motion Planning 

Parameters: 

• geometry of obstacles (polygons, disks, convex, non-convex, etc)

• geometry of robot (point, polygon, disc) 

• robot movement —how many degrees of freedom (dof);  2d, 3d

• objective function to minimize (euclidian distance, nb turns, etc)

• static vs dynamic environment 

• exact vs approximate path planning  

• known vs unknown map 

Input:   

• a robot R 

• start and end position

• a set of obstacles S = {O1, O2,…}


Find a path from start to end (that optimizes some objective function).



• A planner is complete: 

• it always finds a path when a path exists


• A planner is optimal: 

• it finds an optimal path (wrt objective function) 

Motion Planning 

Ideally we want a planner to be complete and optimal.

algorithm that finds a path



Approaches

• Combinatorial (exact)

• Used for 2D path planning 

• Idea: 


• Compute an exact representation of free space and a graph 
that represents the free space


• Find a path using the graph


• Approximate

• sampling-based, search based, space decomposition, 

probabilistic, potential functions

this week

next week



• point robot moving inside an arbitrary polygon


• point robot moving among (arbitrary) polygons


• disk robot moving among (arbitrary) polygons


• polygonal robot moving among (arbitrary) polygons


• translation, translation+rotation


• robot with arms and articulation

harder

2D path planning problems



Overview: this week 

Combinatorial motion planning in 2D

• Point robot moving among polygonal obstacles in 2D


• trapezoidal decomposition 

• visibility graph 


• Polygonal robot moving among polygonal obstacles in 2D

• C-space, C-obstacles, …

• translation only

• translation + rotation 



Point robot moving among polygonal obstacles in 2D

Input:   

• start and end position

• a set of polygonal obstacles S = {O1, O2,…}


Find a path from start to end.



v

start

finish

obstacle obstacle

obstacle

Point robot in 2D



Point robot in 2D

General idea


• Compute a representation of free space 


• Build a graph of free space 


• Search graph to find path    


• Planning a path for point robot in 2D is reduced to graph search


• Questions: How? How long? Size?

(screenshot from O’Rourke)



Compute a trapezoid decomposition of free space and the corresponding graph.



General idea


• Compute a representation of free space


• Trapezoid decomposition  


• Build a graph of free space 


• Search graph to find path    


• BFS

Point robot in 2D

Has size O(n) and can be 
computed  in O(n lg n) time

Has size O(n) and can be 
computed in O(n) time

O(n) time



Point robot in 2D

Result:  Let R be a point robot moving among a set of polygonal obstacles in 2D 

with n edges in total.  We can pre-process S in O(n lg n) expected time such that, 

between any start and goal position, a collision-free path for R can be computed 

in O(n) time, if it exists. 

n   = 	complexity of obstacles 

	 (total number of edges) 

Is this complete? Is this optimal?



Point robot in 2D
n   = 	complexity of obstacles 

	 (total number of edges) 

Is this complete? Is this optimal?

YES No

Result:  Let R be a point robot moving among a set of polygonal obstacles in 2D 

with n edges in total.  We can pre-process S in O(n lg n) expected time such that, 

between any start and goal position, a collision-free path for R can be computed 

in O(n) time, if it exists. 



Show that the trapezoid map is not optimal by giving a scene where it 

dos not give the optimal (shortest) path  

Classwork



What if we wanted the shortest path? 

Point robot in 2D



Theorem: Any shortest path among a set S of disjoint polygonal obstacles 


1.   is a polygonal path (that is, not curved)


2.  its vertices are the vertices of S. 

p
p

Point robot in 2D with shortest paths

How to find a shortest path from start to end?



• Idea: Build the visibility graph (VG)

• represents all possible ways to travel between the vertices of the obstacles


• Claim:  any shortest path must be a path in the VG 

Point robot in 2D with shortest paths











Algorithm


• Compute visibility graph 


• V = {set of vertices of obstacles + pstart + pend}


• E = {all pairs of vertices (u,v) such that uv are visible to each other 


• SSSP (Dijkstra) in VG from start to finish

• Questions to answer


• What’s the size of the VG?


• How to compute it and how long? 

n   = 	complexity of obstacles 

	 (total number of edges) 

Point robot in 2D with shortest paths



• Consider a scene where the total size of the obstacles is n. Come up with an 

example that triggers smallest/largest number of edges in VG (up to a constant 

factor). 


n   = 	complexity of obstacles 

	 (total number of edges) 

Classwork



• Come up with a straightforward algorithm to compute VG and analyze it 


Classwork



• How long does it take to run Dijkstra’s algorithm on VG? 


Classwork



• Complexity of VG


• VVG = O(n),   EVG=O(n2)      <-------    can have quadratic size


• Computing VG 


• naive:         for each edge, check if intersects any obstacle. O(n3)


• improved:    O(n lg n) per vertex, O(n2 lg n) total 


• Dijkstra on VG:    O(EVG lg n) = O(n2 lg n)

n   = 	complexity of obstacles 

	 (total number of edges) 

Point robot in 2D with shortest paths

later



• Compute visibility graph  <------ O(n2 lg n)


• SSSP (Dijkstra) in VG     <------ O(EVG lg n)

Optimal planning for point robot in 2D

Theorem: Given a set of polygonal obstacles with n edges, a shortest path 

between two points can be computed in O(EVG lg n) = O(n2 lg n) time. 

n   = 	complexity of obstacles 

	 (total number of edges) 

Summary



Computing the visibility graph



• For every vertex v:  compute all vertices visible from v in O(n lg n)

Improved computation of VG

v

radial sweep



Improved computation of VG

• Radial sweep: rotate a ray centered at v


• Events: vertices of polygons (obstacles) sorted in radial order


• for = angles, sorted by distance from v

12

3

v Θ(vi) = atan
yi − yv

xi − xv



Improved computation of VG

v

radial sweep

1

2
3

45

6

7

• Radial sweep: rotate a ray centered at v


• Events: vertices of polygons (obstacles) sorted in radial order


• for = angles, sorted by distance from v



Improved computation of VG

Active structure (AS) stores all  the edges that intersect the sweep line, 

ordered by distance from v 

v



Improved computation of VG

v

w

w visible if vw does not intersect the interior of any obstacle



Improved computation of VG

RadialSweep(polygon vertices V, vertex p)


• sort V radially from p, and secondarily  by distance from p


• initialize AS with all edges that intersect the horizontal ray from p


• For each vertex v in sorted order:


• determine if v is visible from p


• figure out if the edges incident to v are above/below the sweep line. 

If above -> insert edge in AS. If below => delete edge from AS 

Runs in O(n lg n) time



p x
NOT visible

p x
NOT visible

NOT visible:

Is vertex x visible from p?
some cases

If there is any edge in AS left  of x, whose 
interior intersects the line

p x
visible



p xx’

x’is a vertex and it’s visible

p x

NOT visible

x’
NOT visible NOT visible

NOT visible

Is vertex x visible from p?

Let x’ be the edge just before x in the AS,   x’ = AS.predecessor(x)

p xx’

x’is a vertex and it’s not visiblex’ interior intersects line

visible visible
p xx’

x’is a vertex and it’s visible

visible

are x, x’ part of same polygon? can be checked fast



• check the event just before x in AS (AS.predecessor(x)). Call this x’. 


• if x’ is an edge whose interior intersects sweep line  => x is not visible


• if x’ has a vertex on the sweep line then: 


• if x’ is not visible => x not visible 


• if x’ is visible => x visible, unless they are both on the same polygon

Runs in O(lg n) time

Is vertex x visible from p?



Computing the visibility graph

END



Summary

• Point robot moving among polygonal obstacles


• Not optimal planning: 


• compute the trapezoid decomposition of free space and a 
graph that represents it: O( n lg n)


• BFS in this graph  in O(n) time 


• Optimal (shortest paths) planning: 

• Compute visibility graph  <------ O(n2 lg n)

• SSSP (Dijkstra) in VG     <------ O(EVG lg n)



Motion planning via Visibility Graph

+ Optimal and complete 


+ VG needs to be computed only once, so we can think of it as pre-

processing 


-  VG may be large, Ω(n2)

 path planning via VG doomed to quadratic complexity



Some history..

• O(n2) algorithm (also with a radial sweep)


• Quadratic barrier broken by Joe Mitchell:  SP of a point robot moving in 2D 

can be computed in 


• Continuous Dijkstra approach:  SP of a point robot moving in 2D can be 

computed in O( n lg n + k) [Hershberger and Suri 1993]


• Special cases can be solved faster:  


• e.g. SP inside a simple polygon w/o holes:  O(n) time

O(n1.5+ϵ)



Visibility Graph in 3D ? 

• Inflection points of SP are not restricted to vertices of S, can be inside edges


• Shortest paths in 3D much harder 


• Computing 3D shortest paths among polyhedral obstacles is NP-complete 


• Complete and optimal planning in 3D is hopeless

VG does not generalize to 3D



• point robot moving inside an arbitrary polygon


• point robot moving among arbitrary polygons


• disk robot moving among arbitrary polygons


• polygonal robot moving among arbitrary polygons


• translation, translation+rotation


• robot with arms and articulation

harder

Where are we?

next 

2D path planning problems



Polygonal robot moving among obstacles in 2D



Convex polygon moving in 2D

• How can the robot move? 


• Translation only 


• Translation + rotation 

screenshot from  internet



Work/physical space 

• Space where robot moves around 


R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

4

4

A placement of robot is specified by the 
degrees of freedom (dof) of the robot


• Example: 


 R(x,y) 


  R(x,y,θ) 


translation + rotation

translation only



Configuration space (C-space)

• C-space: The parametric space of the 

robot = space of all possible placements 
of the robot


• A point in C-space corresponds to 
placement of the robot in physical 
space


• Examples: 


 2D, translation only  <-> R(x,y) 


 2D, transl.+ rot. <-> R(x,y, theta) 


 

R(0,0)

reference point

6

5

R(6,4)

R(0,0,0)

reference point

6

5

R(6,4,45)

45

translation + rotation

translation only



robot physical space C-space

polygon,

(translation only) 2D 2D

Physical Space and C-space

R(x,y)



robot physical space C-space

polygon,

(translation only) 2D 2D

polygon,

(translation + rotations) 2D 3D

Physical Space and C-space

 R(x,y, theta)

R(x,y)



robot physical space C-space

polygon,

(translation only) 2D 2D

polygon,

(translation + rotations) 2D 3D

polygon 

(translation, rotations) 3D 6D

Physical Space and C-space

 R(x,y, theta)

R(x,y)



robot physical space C-space

polygon,

(translation only) 2D 2D

polygon,

(translation + rotations) 2D 3D

polygon 

(translation, rotations) 3D 6D

Robot arm with joints 3D #DOF

Physical Space and C-space



Path planning in C-space


• Any path for R corresponds to a path for R in C-space 


• Path planning => path planning in C-space

R(0,0)

R(1,1)

R(2,2)

R(3,1)

R(4,.5,)



Free C-space

(x,y)

placement or robot at 
(x,y)

does not intersect 
obstacles

A point (x,y) is in free C-space if placing R(x,y) does not intersect the 
obstacles



Forbidden C-space

(x,y)

placement or robot at 
(x,y)

intersects obstacle

forbidden C-space: 


placements (x,y) 

where robot intersects 


with obstacle

A point (x,y) is in forbidden C-space if it is not in free C-space.



•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O

Extended obstacles or C-obstacles

O



•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O

O

C-obstacle corresponding to O

O

Extended obstacles or C-obstacles



Extended obstacles or C-obstacles

•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O



Extended obstacles or C-obstacles

•  Given obstacle O and robot R

• C-obstacle = the placements of R that cause intersection with O



• Consider a rectangular robot. Draw a small set of obstacles such that their C-

obstacles overlap. 

Class work



• Consider a rectangular robot. Draw a scene of obstacles such that free 
physical space is not disconnected, but the the free C-space is disconnected. 

Class work



Class work

r

robot

Show the corresponding C-obstacles for a disc robot.



obstacle extended obstacle

Class work

r

robot



Show the corresponding C-obstacle.

robot

translation only

Class work



Polygonal robot translating in 2D



Polygonal robot translating in 2D

Algorithm

• For each obstacle O, compute the 

corresponding C-obstacle

• Compute the union of C-obstacles

• Compute its complement. That’s the free 

C-space


	     //problem is reduced to a point robot


        //moving in free C-space

• Compute a trapezoidal map of free C-

space

• Use it to compute a roadmap of free 

space

O

O

O

How and how fast can this be done?

Complete, non optimal. 



How to compute C-obstacles?



Minkowski sum
• Let A, B two sets of points in the plane 

• Define A + B =  { x + y | x in A, y in B}                 Minkowski sum


• Interpretation:   consider set A to be centered at the origin. Then A + B 
represents many copies of A, translated by y, for all y in B; i.e. place a copy of 
A centered at each point of B.

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B +  A

y

y

y

x, y vectorsvector sum



Minkowski sum

• A + B: Slide A so that the center of A traces the edges of B 

BB
x

A A

x+A

A

A translated by x

A

BA
A A A

A
A

AA
A

A

B +  A

y

y

y



C-obstacles as Minkowski sums

BB
x

x+R

R translated by x

B

B +  R

R R

R

R

R
RR

R

R
R

R

• Consider a robot R with the reference in the lower left corner



C-obstacles as Minkowski sums

B + R is not quite the C-obstacle of B

• Consider a robot R with the reference in the lower left corner

BB
x

x+R

R translated by x

B

B +  R

R R

R

R

R
RR

R

R
R

R



BB
x

-R translated by x

B

B +  -R
-R

R

-R: R reflected by origin

-R

-R

-R

-R
-R -R

-R
-R

-R
-R

-R-R

The C-obstacle of B is B + (- R(0,0)).

C-obstacles as Minkowski sums



O

C-obstacle corresponding to O

Slide so that R touches the obstacle Find O + (-R)



O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R  traces

the edges of obstacle



O

C-obstacle corresponding to O

Slide so that R touches the obstacle

C-obstacle corresponding to O

R

-R

Slide so that centerpoint of -R  traces

the edges of obstacle



R



R

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R



R

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R



-R
R



-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-R



-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-R



-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-RR

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R



-R
R

-R

-R
-R
-R
-R -R

-R
-R
-R

-R-R

-R-R-R

-R

-RR

R R R

RR
R
R
R
R
R
R

R
R
R
R
R
R

R



R



R
R

R
R

R R

R
R

R

R

R
R

R
R

R

R



R
R

R
R

R R

R
R

R

R

R
R

R
R

R

R



R
-R



R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R



R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R



R
-R

- - -
- -

-
-

-
- -

-
-

-
-

-
-

---
-

--

R

R
R

R
R

R R

R
R

R
R

R
R

R
R

R



R
-R

-R-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R
-R

-R-R
-R

-R-R

How do we compute Minkowski sums?



How to compute Minkowski sums?

C-obstacle corresponding to O

R

-R



C-obstacle corresponding to O

R

-R

CASE 1: Convex robot with convex polygon



C-obstacle corresponding to O

R

-R

• Each edge in R, O will cause an edge in R+O
parallel edges will cause same edge

• R+O has O(m+n) edges

CASE 1: Convex robot with convex polygon



• To compute: Place -R at all vertices of O and compute convex hull 


• Possible to compute in O(m+n) time by walking along the boundaries of 
R and O

R

-R

CASE 1: Convex robot with convex polygon



2D


• convex + convex polygons


• The Minkowski sum of two convex polygons with n, and m edges respectively, 
is a convex polygon with n+m edges and can be computed in O(n+m) time. 


• convex + non-convex polygons


• Triangulate and compute Minkowski sums for each pair [convex polygon, 
triangle], and take their union


• Size of Minkowski sum:  O(m+3) for each triangle => O(mn)


• non-convex + non-convex polygons: 


• size of Minkowski sum: O(n2m2)


3D 


• it gets worse . . . 

In general…



Back to planning



Polygonal robot translating in 2D

How fast can this be done?

O

O

O

Algorithm

• For each obstacle O, compute the 

corresponding C-obstacle

• Compute the union of C-obstacles

• Compute its complement. That’s the free 

C-space


	    //problem is reduced to a point robot


       //moving in free C-space

• Compute a trapezoidal map of free C-

space

• Use it to compute a roadmap of free 

space

Complete, non optimal. 



Polygonal robot translating in 2D

Algorithm

• For each obstacle O, compute the 

corresponding C-obstacle

• Compute the union of C-obstacles

• Compute its complement. That’s the free 

C-space


	    //problem is reduced to a point robot


       //moving in free C-space

• Compute a trapezoidal map of free C-

space

• Use it to compute a roadmap of free 

space

O

O

O

For a convex robot of O(1) size

• Free C-space can be 

computed in O(n lg2n) time.

• With O(n lg2n)  time pre-

processing, a collision-free 
path can be found  for any 
start and end in O(n) time. 

Complete, non optimal. 

How fast can this be done?



So far we’ve considered only translation

Next: Translation + Rotation



Polygonal robot in 2D with rotations 

• Physical space is 2D 

• A placement is specifies by 3 parameters: R(x,y, theta)  ==> C-space is 3D. 



• We’d like to extend  the same approach: 


 Reduce to point robot moving among C-obstacles in C-space. 

• Compute C-obstacles 

• Compute free space as complement of union of C-obstacles

• Decompose free space into simple cells 

• Construct a  graph(roadmap)

• BFS on roadmap

Polygonal robot in 2D with rotations 



• What does a C-obstacle look like when rotations are allowed? 

O

R(0,0,  0)

Polygonal robot in 2D with rotations 

θ
x

y



O

R(0,0,  0)

θ
x

y

Polygonal robot in 2D with rotations 

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,20)

Polygonal robot in 2D with rotations 

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



O

R(0,0,20)

Polygonal robot in 2D with rotations 

θ
x

y

• What does a C-obstacle look like when rotations are allowed? 



• Imagine moving a vertical plane through C-space.  Each position of the 

plane will correspond to a fixed theta.


• Each cross-section of a C-obstacle is a Minkowski sum O + -R (0,0,θ) 


• => twisted pillar

O

R(0,0,  θ)

Polygonal robot in 2D with rotations 

θ
x

y

A C-obstacle is a 3D shape. 




the closest i could find ..



What’s known: 

• C-space is 3D

• Boundary of free space is curved, not polygonal. 

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex 

robot

Polygonal robot in 2D with rotations 



Polygonal robot in 2D with rotations 

• Extend same approach: 


1. Compute C-obstacles and C-free


2. Compute a decomposition of free space into simple cells 


3. Construct a roadmap 


4. BFS on roadmap 


space is 3D

Difficult to construct a good cell decomposition for curved 3D space

What’s known: 

• C-space is 3D

• Boundary of free space is curved, not polygonal. 

• Combinatorial complexity of free space is O(n2) for convex, O(n3) for non-convex 

robot



Polygonal robot in 2D with rotations 

• Difficult to construct a good cell decomposition for curved 3D space

• One possible approach:  


• Discretize rotation angle and compute a finite number of slices, one for each angle

• For a fixed angle:  you got translational motion planning

• Construct a trapezoidal decomposition for each slice and its roadmap 

• Link them into a 3D roadmap: Add “vertical” edges between slices to allow robot 

to move up/down between slices; these  correspond to rotational moves. 


• Example: Consider two angles a and b.  If placement (x,y) is in free space in slice a, 

and (x,y) is in free space in slice b, then the 3D roadmap should contain a vertical 

edge between slice a and b at that position


• Is this complete?



Combinatorial motion planning : Summary

• Idea: Compute free C-space combinatorially (exactly)

• Point robot moving among polygonal obstacles in 2D


• trapezoidal decomposition 

• visibility graph 


• Polygonal robot moving among polygonal obstacles in 2D

• C-space, C-obstacles, …

• translation only, translation + rotation 

• Comments

• Complete

• Works beautifully in 2D and for some (simple) cases in 3D 


• Worst-case bound for combinatorial complexity of C-obstacles in 3D is high 

• Unfeasible/intractable for high #DOF


• A complete planner in 3D runs in O(2n^#DOF)



Project preview
1. Generate a scene consisting of multiple polygonal obstacles and a start and end position. Have a pre-set scene 

when you start, but also allow the user to change the start and end position for the same scene, and to reset the 
whole scene and start from scratch entering polygons.


2. Compute and render the visibility graph.

3. Run Dijkstra's algorithm on the VG and render the resulting path (for e.g. in a different color and different line 

width).



Additional exercises



Consider arbitrary two points inside this polygon, and draw the shortest path between them.  


What can you claim about the shortest path inside a polygon? (in terms of its intermediate points)



Consider a point s as below.

Draw the region of the polygon that contains all points p such that the shortest path from s to p 
consists of the straight line segment sp.

s



Consider a point s as below.

Draw the region of the polygon that contains all points p such that the shortest path from s to p 
consists of the straight line segment sa plus the straight line segment ap.

s a



Consider a point s as below.

Draw the shortest path map of s.

s ba


