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Given an array of points in 2D, find the closest pair.
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Given an array of points in 2D, find the closest pair.

P



The distance between two points p and q is given by the Euclidian distance given 
by the formula: 

d(p,q) =    (xp-xq)2 + (yp-yq)2
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Given an array of points in 2D, find the closest pair.

P



Brute force:   
• mindist = VERY_LARGE_VALUE


• for all distinct pairs of points pi, pj


• d = distance (pi, pj)


• if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.
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• O(n2) pairs  ==> O(n2) time

Given an array of points in 2D, find the closest pair.



Brute force:   
• mindist = VERY_LARGE_VALUE


• for all distinct pairs of points pi, pj


• d = distance (pi, pj)


• if (d< mindist): mindist=d

• Analysis:  
• O(n2) pairs  ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better 
than O(n2)?



Brute force:   
• mindist = VERY_LARGE_VALUE


• for all distinct pairs of points pi, pj


• d = distance (pi, pj)


• if (d< mindist): mindist=d

• Analysis:  
• O(n2) pairs  ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better 
than O(n2)?

Hint: divide-and-conquer



Divide-and-conquer refresher



Divide-and-conquer
mergesort(array A)

• if A has 1 element, there’s nothing to sort, so just return it

• else 


//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A


//sort recursively each half 


• sorted_A1 = mergesort(array A1) 


• sorted_A2 = mergesort(array A2) 


//merge 

• result = merge_sorted_arrays(sorted_A1, sorted_A2) 

• return result



Divide-and-conquer

Analysis: T(n) = 2T(n/2) + O(n)  => O( n lg n)

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else 


//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A


//sort recursively each half 


• sorted_A1 = mergesort(array A1) 


• sorted_A2 = mergesort(array A2) 


//merge 

• result = merge_sorted_arrays(sorted_A1, sorted_A2) 

• return result



DC(input P)

if P is small, solve and return 


else 


//divide


divide input P into two halves, P1 and P2


//recurse 


result1 = DC(P1) 


result2 = DC(P2) 


//merge 


do_something_to_figure_out_result_for_P  


 
return result

D&C, in general

Analysis: T(n) = 2T(n/2) + O(merge phase) 



DC(input P)

if P is small, solve and return 


else 


//divide


divide input P into two halves, P1 and P2


//recurse 


result1 = DC(P1) 


result2 = DC(P2) 


//merge 


do_something_to_figure_out_result_for_P  


 
return result

D&C, in general

• if merge phase is O(n):        T(n) = 2T(n/2) + O(n)         => O( n lg n) 

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase) 



Closest pair, divide-and-conquer



• find vertical line that splits P in half
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• let P1, P2 = set of points to the left/right of line
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• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1


P1 P2

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• //…… NOW WHAT ???

Closest pair, divide-and-conquer



• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• find closest pair that straddles the line
• return the minimum of the three

Closest pair, divide-and-conquer



FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else 


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)


 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2


• compute distance d(p,q) 

• mindist = min{d1, d2, d(p,q)}


  //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

Is this correct? 



Correct, because the closest pair in P must be one of:  

• Both points are in P1, and then it is found by the recursive call 
on P1 

• Both points are in P2, and then it is found by the recursive call 
on P2 

• One point is in P1 and one in P2, and then it is found in the 
merge phase, because the merge phase considers all such 
pairs

Closest pair, divide-and-conquer



FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else 


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)


 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2


• compute distance d(p,q) 

• mindist = min{d1, d2, d(p,q)}


  //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

Running time? 



Closest pair, divide-and-conquer



FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else 


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)


 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2


• compute distance d(p,q) 

• mindist = min{d1, d2, d(p,q)}


  //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

Running time? 

T(n) = 2T(n/2) + O(n2)

solves to O(n2)



Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?  

p
q

Why not? Where do p,q need to lie in order to be the closest pair? 

d1

d2

Can (p,q) be the closest pair? 



Notation: d = min {d1, d2}

p
q

d2

d1

Claim: In order for dist(p,q) to be smaller than d, it must be that both the 
horizontal and vertical distance between p and q must be smaller than d.  



p
q
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Claim:  In order to be candidates for closest pair, points  p, q must lie 
in the d-by-d strip centered at the median.

Notation: d = min {d1, d2}



Refining the merge

p
q

d2

d1

FindClosestPair(P)

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1=FindClosestPair(P1)

• d2=FindClosetPair(P2)

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’


• for each point q in P2’

• compute distance d(p,q) 

• mindist = min{d1, d2, d(p,q)}


• return min {d1, d2, mindist}

Running time? 



Refining the merge

p
q

d2

d1

FindClosestPair(P)

• if P has 1 point, return infinity 

• if P has 2 points, return their distance

• else


• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1=FindClosestPair(P1)

• d2=FindClosetPair(P2)

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’


• for each point q in P2’

• compute distance d(p,q) 

• mindist = min{d1, d2, d(p,q)}


• return min {d1, d2, mindist}

Running time? 

It’s possible that all n/2 points on either side lie inside the strip



• Show an example where the strip may contain Omega(n) points.

Refining the merge

• What does this imply for the running time?

p
q

d2

d1



• Filtering the points in the strip is not enough 
• But, we can show that the points in the strip have a special structure which 

will enable us to merge faster

Refining the merge

d d



Refining the merge

d d

Any pair of points in P1 
must be at least d away

Any pair of points in P2 
must be at least d away

Points on both sides are “sparse”



Refining the merge

d d

Any pair of points in P1 
must be at least d away

Any pair of points in P2 
must be at least d away

Points on both sides are “sparse”

Any square with side d 
contains at most 4 points of  P1



Refining the merge

d d

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p



d d

Refining the merge

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

• CLAIM: All points of P2’ within distance d of p 
are vertically above or below p by at most d 
==>  they must lie in a rectangle d x 2d

d

d
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Refining the merge

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

• CLAIM: All points of P2’ within distance d of p 
are vertically above or below p by at most d 
==>  they must lie in a rectangle d x 2d

d

d

• How many points q of P2’ can there be in a 
rectangle of size d x 2d? (knowing that any 
pair of points in P2’ must be at least d away). 



d d

Refining the merge

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

• CLAIM: All points of P2’ within distance d of p 
are vertically above or below p by at most d 
==>  they must lie in a rectangle d x 2d

d

d

• How many points q of P2’ can there be in a 
rectangle of size d x 2d? (knowing that any 
pair of points in P2’ must be at least d away). 

=> So for every p in P1’,  we only need to check at 
most 6 points!



• An elegant/simple way to do this is by traversing the points in P1’ and P2’ in y-order 
• A point p needs to check only the points following it, and there can be at most 5 

points following p in y-order that are within d from p. 

Refining the merge

p

d d

Note: Assume no duplicate points.



Refining the merge
closestPair(P)

//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//merge

• let d = min{d1, d2}

• Strip= empty 

• for all p in  P1: if xp > xl - d: add p to Strip

• for all p in  P2: if xp < xl + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order


• compute its distance to the 5 points that come after it in 
sorted order


• if any of these is smaller than mindist, update mindist 


• return mindist

d d



Refining the merge
closestPair(P)

//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//merge

• let d = min{d1, d2}

• Strip= empty 

• for all p in  P1: if xp > xl - d: add p to Strip

• for all p in  P2: if xp < xl + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order


• compute its distance to the 5 points that come after it in 
sorted order


• if any of these is smaller than mindist, update mindist 


• return mindist

d d

Analysis:  T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)



• The sorted list of points in the strip can be obtained from pre-sorting P

Closest pair, divide-and-conquer

closestPair(P_sorted_by_x,   P_sorted_by_y)

• Sort P at the beginning and maintain it through recursion 
• Final recurrence is T(n) = 2T(n/2) + O(n), which solves to O(n lg n)


