
Finding the closest pair

Computational Geometry [csci 3250]
Laura Toma

Bowdoin College

Given an array of points in 2D, find the closest pair.

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

P

The distance between two points p and q is given by the Euclidian distance given
by the formula:

d(p,q) = (xp-xq)2 + (yp-yq)2

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p0 p1 p2 p3 p4 p5 ….

Given an array of points in 2D, find the closest pair.

P

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

Brute force:
• mindist = VERY_LARGE_VALUE

• for all distinct pairs of points pi, pj

• d = distance (pi, pj)

• if (d< mindist): mindist=d

• Analysis:
• O(n2) pairs ==> O(n2) time

Given an array of points in 2D, find the closest pair.

Can we do better
than O(n2)?

Hint: divide-and-conquer

Divide-and-conquer refresher

Divide-and-conquer
mergesort(array A)

• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_A1 = mergesort(array A1)

• sorted_A2 = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_A1, sorted_A2)

• return result

Divide-and-conquer

Analysis: T(n) = 2T(n/2) + O(n) => O(n lg n)

mergesort(array A)
• if A has 1 element, there’s nothing to sort, so just return it

• else

//divide input A into two halves, A1 and A2

• A1 = first half of A

• A2 = second half of A

//sort recursively each half

• sorted_A1 = mergesort(array A1)

• sorted_A2 = mergesort(array A2)

//merge

• result = merge_sorted_arrays(sorted_A1, sorted_A2)

• return result

DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

D&C, in general

Analysis: T(n) = 2T(n/2) + O(merge phase)

DC(input P)

if P is small, solve and return

else

//divide

divide input P into two halves, P1 and P2

//recurse

result1 = DC(P1)

result2 = DC(P2)

//merge

do_something_to_figure_out_result_for_P

 
return result

D&C, in general

• if merge phase is O(n): T(n) = 2T(n/2) + O(n) => O(n lg n)

• if merge phase is O(n lg n): T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

Analysis: T(n) = 2T(n/2) + O(merge phase)

Closest pair, divide-and-conquer

• find vertical line that splits P in half

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2

P1 P2

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• //…… NOW WHAT ???

Closest pair, divide-and-conquer

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• recursively find closest pair in P1

• recursively find closest pair in P2
• find closest pair that straddles the line
• return the minimum of the three

Closest pair, divide-and-conquer

FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

Is this correct?

Correct, because the closest pair in P must be one of:

• Both points are in P1, and then it is found by the recursive call
on P1

• Both points are in P2, and then it is found by the recursive call
on P2

• One point is in P1 and one in P2, and then it is found in the
merge phase, because the merge phase considers all such
pairs

Closest pair, divide-and-conquer

FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

Running time?

Closest pair, divide-and-conquer

FindClosestPair(P)

 //basecase

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = FindClosestPair(P1)

• d2 = FindClosestPair(P2)

 //compute closest pair across

• mindist=infinity

• for each p in P1, for each q in P2

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

 //return smallest of the three

• return min {d1, d2, mindist}

Closest pair, divide-and-conquer

Running time?

T(n) = 2T(n/2) + O(n2)

solves to O(n2)

Refining the merge

Do we need to examine all pairs (p,q), with p in P1, q in P2?

p
q

Why not? Where do p,q need to lie in order to be the closest pair?

d1

d2

Can (p,q) be the closest pair?

Notation: d = min {d1, d2}

p
q

d2

d1

Claim: In order for dist(p,q) to be smaller than d, it must be that both the
horizontal and vertical distance between p and q must be smaller than d.

p
q

d2

d1

Claim: In order to be candidates for closest pair, points p, q must lie
in the d-by-d strip centered at the median.

Notation: d = min {d1, d2}

Refining the merge

p
q

d2

d1

FindClosestPair(P)

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1=FindClosestPair(P1)

• d2=FindClosetPair(P2)

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’

• for each point q in P2’

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

• return min {d1, d2, mindist}

Running time?

Refining the merge

p
q

d2

d1

FindClosestPair(P)

• if P has 1 point, return infinity

• if P has 2 points, return their distance

• else

• find vertical line that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1=FindClosestPair(P1)

• d2=FindClosetPair(P2)

• traverse P1 and select all points P1’ in the strip

• traverse P2 and select all points P2’ in the strip

• for each p in P1’

• for each point q in P2’

• compute distance d(p,q)

• mindist = min{d1, d2, d(p,q)}

• return min {d1, d2, mindist}

Running time?

It’s possible that all n/2 points on either side lie inside the strip

• Show an example where the strip may contain Omega(n) points.

Refining the merge

• What does this imply for the running time?

p
q

d2

d1

• Filtering the points in the strip is not enough
• But, we can show that the points in the strip have a special structure which

will enable us to merge faster

Refining the merge

d d

Refining the merge

d d

Any pair of points in P1
must be at least d away

Any pair of points in P2
must be at least d away

Points on both sides are “sparse”

Refining the merge

d d

Any pair of points in P1
must be at least d away

Any pair of points in P2
must be at least d away

Points on both sides are “sparse”

Any square with side d
contains at most 4 points of P1

Refining the merge

d d

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

d d

Refining the merge

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

• CLAIM: All points of P2’ within distance d of p
are vertically above or below p by at most d
==> they must lie in a rectangle d x 2d

d

d

d d

Refining the merge

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

• CLAIM: All points of P2’ within distance d of p
are vertically above or below p by at most d
==> they must lie in a rectangle d x 2d

d

d

• How many points q of P2’ can there be in a
rectangle of size d x 2d? (knowing that any
pair of points in P2’ must be at least d away).

d d

Refining the merge

• We don’t need to compute the distances from p to all points in P2’
• Furthermore, consider a point p in P1’

p

• CLAIM: All points of P2’ within distance d of p
are vertically above or below p by at most d
==> they must lie in a rectangle d x 2d

d

d

• How many points q of P2’ can there be in a
rectangle of size d x 2d? (knowing that any
pair of points in P2’ must be at least d away).

=> So for every p in P1’, we only need to check at
most 6 points!

• An elegant/simple way to do this is by traversing the points in P1’ and P2’ in y-order
• A point p needs to check only the points following it, and there can be at most 5

points following p in y-order that are within d from p.

Refining the merge

p

d d

Note: Assume no duplicate points.

Refining the merge
closestPair(P)

//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//merge

• let d = min{d1, d2}

• Strip= empty

• for all p in P1: if xp > xl - d: add p to Strip

• for all p in P2: if xp < xl + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Refining the merge
closestPair(P)

//divide

• find vertical line l that splits P in half

• let P1, P2 = set of points to the left/right of line

• d1 = closestPair(P1)

• d2 = closestPair(P2)

//merge

• let d = min{d1, d2}

• Strip= empty

• for all p in P1: if xp > xl - d: add p to Strip

• for all p in P2: if xp < xl + d: add p to Strip

• sort Strip by y-coord

• initialize mindist=d

• for each p in Strip in sorted order

• compute its distance to the 5 points that come after it in
sorted order

• if any of these is smaller than mindist, update mindist

• return mindist

d d

Analysis: T(n) = 2T(n/2) + O(n lg n) => O(n lg2n)

• The sorted list of points in the strip can be obtained from pre-sorting P

Closest pair, divide-and-conquer

closestPair(P_sorted_by_x, P_sorted_by_y)

• Sort P at the beginning and maintain it through recursion
• Final recurrence is T(n) = 2T(n/2) + O(n), which solves to O(n lg n)

