
Laura Toma

Bowdoin College

Algorithms for GIS
csci3225

Visibility on terrains

Are two points visible to each other?

What can one see from a given viewpoint?

What is the point with largest/smallest visibility?

How to place an ugly pipe in a scenic area?

How to place a scenic highway?

What is the cumulative visible area from a set of viewpoints?

Find a set of tower locations that “covers” the terrain

Visibility on terrains

Points u,v are visible if segment uv does not intersect the terrain

uv is called line-of-sight (LOS)

What can one see from a given point on a terrain?

• Terrain model T + viewpoint v
• Compute the viewshed of v: what part of T is visible from v

Sierra Nevada, 30m resolution

Problem: Given terrain model T + viewpoint v, compute the viewshed of v

TINs (vector)

images from Herman Haverkort

Terrain models

Rasters

(what part of T is visible from v)

Viewsheds on grid terrains

Sierra Nevada, 30m resolution

Compute a discrete viewshed
• each grid point is marked visible/invisible ==> viewshed is a grid
• ignore the precise shape of the viewshed in between the grid points

from: http://arxiv.org/pdf/1309.4323.pdf

Viewsheds on TIN terrains

Compute a continuous viewshed
• compute the exact shape of the viewshed
• viewshed is a (set of) polygons

http://arxiv.org/pdf/1309.4323.pdf

Outline

• Viewsheds on grid terrains

1. straightforward algorithm

2. radial sweep algorithm

3. viewshed via horizon

• Viewsheds on TIN terrains
• quadratic size, worst-case construction

Viewsheds on Grids:

1. Basic (naive) algorithm

v

p

Are v,p visible?

v

p

What is the height of the terrain along the LOS?
Use linear interpolation.

v

p

Are v,p visible?

v

p

1. Compute intersections (in xy-plane) of LOS with the grid lines
2. Lift to 3D: Interpolate their elevations linearly

(r,c)

(r-1,c)
p

p’

a
y1

y2

y3

y1 = d1 tan a
y2 = d2 tan a

d1
d2 d3

Are v,p visible?

1. Compute intersections (in xy-plane) of LOS with the grid lines
2. Lift to 3D: Interpolate their elevations linearly

v

p

Are v,p visible?

v p
a b c

d e
f

a b c d e f

When is p visible?

1. Compute intersections (in xy-plane) of LOS with the grid lines
2. Lift to 3D: Interpolate their elevations linearly

v p

LOS

Vertical angle of a point p with respect to v

How tall p appears from v

verticalAnglev(p) = atan (hp - hv) / d(v,p)

1. Find the intersections (in the xy-plane) between LOS and the grid lines

2. Lift to 3D: find their elevations by linear interpolation

3. If all verticalAnglev(a) are below verticalAnglev(p) ==> p visible

p

v

b

LOS

a

c
d

e
v pc

LOS

Are v,p visible?

f

This takes O(n) per point in the worst case

Grid of n points:
n x n

Basic viewshed algorithm

• For every point p=(i,j) in the grid
• Find if p is visible from v

• Analysis: O(n n)

• Uses linear interpolation

Grid of n points:
n x n

Linear interpolation

Terrain: mesh of triangles on grid points

v

p

Are v,p visible?

v pa b c d e f

Basic viewshed algorithm

• For every point p=(i,j) in the grid
• Find if p is visible from v

• Analysis: O(n n)

• Uses linear interpolation

• Can we do better (faster)?
• without skipping points/introducing approximation

Grid of n points:
n x n

• A better algorithm is known, but uses a different/simpler interpolation

Grids with nearest neighbor interpolation

20

Viewsheds on Grids:

2. Van Kreveld’s radial sweep viewshed algorithm [VK’96]

Are v,p visible?

v

p

Need the profile of the terrain along LOS vp

Are v,p visible?

v

p

v pa b c d e f

If the terrain is linear, a straightforward implementation leads to O(n) per point

Need the profile of the terrain along LOS vp

Grid of n points:
n x n

is_visible(v,p) deconstructed

v

p

v pa b c d e f

• Find all grid segments that intersect LOS vp
• Find maximum vertical angle
• p above/below ==> visible/invisible

max vertical angle

is_visible(v,p) deconstructed

v

p

v pa b c d e f

• Find all grid segments that intersect LOS vp
• Find maximum vertical angle
• p above/below ==> visible/invisible

max vertical angle

O(n)
O(n)

O(1)

v

p
p’

How to re-use some of this

computation for another point?

• Find all grid segments that intersect LOS vp
• Find maximum vertical angle
• p above/below ==> visible/invisible

is_visible(v,p) deconstructed

v

p
p’

Some segments intersected by both

How to re-use some of this

computation for another point?

is_visible(v,p) deconstructed

The intersection point and its vertical angle is different

v

p
p’

Some segments intersected by both

How to re-use some of this

computation for another point?

is_visible(v,p) deconstructed

The intersection point and its vertical angle is different

But… if the segment was at constant height…

Are v,p visible?

Assume that the vertical angle for a cell is the same throughout the cell.
Terrain consists of cells centered at the grid points.

v

p

Are v,p visible?

Assume that the vertical angle for a cell is the same throughout the cell.
Terrain consists of cells centered at the grid points.

a

p

Towards a faster algorithm

• Idea 1: The lines-of-sight to two nearby points intersect a lot of same cells.

• Idea 2: Assume that the vertical angle for a cell is the same throughout the
cell (i.e. nearest neighbor interpolation instead of linear)

• Idea 3: instead of computing visibility of points in row-column order, compute
in radial order

LOS to two nearby points intersect a lot of the same cells

new

old

common

How to express that a cell intersects/does not intersect the LOS?

LOS to two nearby points intersect a lot of the same cells

a1 a2

cell intersects LOS ==> azimuth(LOS) between a1 and a2

It’s the azimuth!!

Towards a faster algorithm

• Idea 1: The lines-of-sight to two nearby points intersect a lot of same cells.

• Idea 2: Assume that the vertical angle for a cell is the same throughout the
cell (i.e. nearest neighbor interpolation instead of linear)

• Idea 3: Compute visibility of points in radial order around v

• for i = 0; i< rows; i++
• for j=0; j< cols; j++

• find if (i,j) is visible from v

Viewshed in row-column order

• sort points (i,j) by radial angle of (i,j)
• for each point (i,j) in order:

• find if (i,j) is visible from v

Viewshed in radial order

Some of the cells that intersected the previous
point will also intersect the current point; re-use
them. HOW???

• Radial sweep
• rotate a ray radially around v
• respond to “interesting” events

new

old

common

We’ll compute visibility of points in radial order around v

dead
alive

a1 a2
• Ray hits a1: cell alive
• Ray hits a2: cell dies
• Ray between a1 and a2: cell intersects ray

The events

• when ray hits ENTER(i,j): cell (i,j) becomes active

• when ray hits a grid point (i,j): determine if (i,j) is visible

• when ray hits EXIT(i,j): cell (i,j) becomes inactive

between ENTER(i,j) and EXIT(i,j):

cell (i,j) will be active

The events

dead
alive

dead

• For each point (i,j): compute its ENTER, CENTER, EXIT events
• Sort all events by radial angle wrt v
• initialize AS to contain all cells that are active at angle=0
• For next event (r,c, type) in radial order

• if type is ENTER: //cell becomes active
• insert cell(r,c) in AS

• if event is EXIT: //cell stops being active
• delete cell(r,c) from AS

• if event is CENTER:
//CLAIM: all cells that intersect the los from v to (r,c) must be in the AS
• use AS to find maximum verticalAngle of all cells between v and

cell(r,c)
• if this angle is below verticalAngle(r,c) then (r,c) is visible; otherwise

(r,c) is invisible

Van Kreveld’s radial sweep algorithm
(r,c,CENTER

(r+.5,c+.5, ENTER)

(r-.5,c-.5, EXIT)

The 3 events corresponding to each cell

For an arbitrary position of the ray, all cells that it intersects will be in AS

For an arbitrary position of the ray, all cells that it intersects will be in AS

When process CENTER(r,c): , all cells that intersect ray will be in AS

When process CENTER(r,c): , all cells that intersect ray will be in AS

Want only the cells that are in between v and (r,c)

• What’s a good data structure for the AS?
• Needs to be able to insert and delete cells
• Find vertical angles of all active cells between v and given (r,c)

Analysis

1. Number the points in order of their azimuth from v=(2,1)
2. Make a list of the cells, and their spans

3. For each cell, write down its 3 events. Pause to think about what you want to
store in an “event”. How many events in total?

4. Sort the events radially, and for equal azimuth, increasingly by distance from v.

5. Sketch out the comparison function that you’ll pass to quicksort.

6. What events will initialize the PQ?

7. Simulate the sweep.

Class work

Consider the following grid, with viewpoint in red

Computing viewsheds

1. Straightforward algorithm
• O(n n)
• Uses linear interpolation
• Can be adapted to other interpolations

2. Radial sweep approach
• O(n lg n)
• Uses nearest neighbor interpolation
• Not easy to extend: crucially exploits that cells are “flat”
• Nearest neighbor produces some artifacts

3. NEXT: Concentric sweep and horizons

Grid of n points:
n x n

test grid: hemisphere viewshed with NN interpolation viewshed with linear
interpolation

Viewsheds on grids:

3. Viewsheds and horizons

Ingredient 1: concentric sweep

Ingredient 2: horizons

 Concentric sweep

 Concentric sweep

L1

 Concentric sweep

L2

 Concentric sweep

L3

 Concentric sweep

Horizons

• Merriam Webster:
• the line where the terrain and the sky seem to meet

Horizons

• Merriam Webster:
• the line where the terrain and the sky seem to meet

Hv : [0, 2PI) ——> R

Hv(a) : horizon (with respect to v) in direction a
• cut the terrain with a vertical plane through ray from v of azimuth a
• Hv(a) is the maximum vertical angle (zenith) of all points intersected by this

plane (all the points on T whose projection on the xy-plane has azimuth a)

Horizon

v

z
v x

y

a

v

Hv : [0, 2PI) ——> R

Hv(a) : horizon (with respect to v) in direction a
• cut the terrain with a vertical plane through ray from v of azimuth a
• Hv(a) is the maximum vertical angle (zenith) of all points intersected by this

plane (all the points on T whose projection on the xy-plane has azimuth a)

Horizon

v

z
v x

y

a

v
b

Hv(a) = b

Hv : [0, 2PI) ——> R

Hv(a) : horizon (with respect to v) in direction a
• cut the terrain with a vertical plane through a ray from v of azimuth a
• Hv(a) is the maximum vertical angle (zenith) of all points intersected by this

plane (all the points on T whose projection on the xy-plane has azimuth a)

Horizon

v

z
v x

y

a

v
b

Hv(a) = b

This point appears on the skyline

Beyond here, a point is visible if and
only if it is above the horizon

A point is visible if it is above the horizon.

Compute the viewshed by computing horizons.

vertical slope (zenith)

0 PI/4 PI/2 PI 2PI

L1
H1

Viewshed and horizons

vertical slope (zenith)

0 PI/4 PI/2 PI 2PI

L1
H1

Viewshed and horizons

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

L2

H2

Viewshed and horizons

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

L2

H2

Viewshed and horizons

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

L2

H2

Viewshed and horizons

H1

L2

L1

Viewshed and horizons

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

H2

H1

H1 H2H12 =

Viewshed and horizons

H12

Viewshed and horizons

We walk along L3, computing the horizon of L3 and determining if points on L3 are visible or not

L3

H12

L3p

a

p is visible if
slope(vp) < H12(a)

Is point p in L3 visible ?

a

Viewshed and horizons

H12

• Elegant techniques that can be extended
• Linear interpolation or nearest neighbor,…
• Starting point for triangulated terrains

• Worst-case bounds not great
• fast in practice because horizons stay very small

Viewshed and horizons

Viewsheds on triangulated terrains

Viewsheds on triangulated terrains

• viewshed(p) contains all points of the terrain that are visible from p

• viewshed(p) may intersect a triangle multiple times.
• How big can viewshed(p) be?

• Space complexity = number of edges on boundary of viewshed(p)
• It is known that the complexity of a viewshed on a triangulated terrain can be

O(n2). On a triangulated grid, the complexity of a viewshed is O(n n)
• These worst-case cases exist, but are contrived/not realistic.
• In practice, on realistic terrains, viewsheds are small. Proving realistic upper

bounds still open problem.

from: http://arxiv.org/pdf/1309.4323.pdf

http://arxiv.org/pdf/1309.4323.pdf

Viewsheds on triangulated terrains

• viewshed(p) contains all points of the terrain that are visible from p

• viewshed(p) may intersect a triangle multiple times.
• How big can viewshed(p) be?

• Space complexity = number of edges on boundary of viewshed(p)
• It is known that the complexity of a viewshed on a triangulated terrain can be

O(n2). On a triangulated grid, the complexity of a viewshed is O(n n)
• These worst-case cases exist, but are contrived/not realistic.
• In practice, on realistic terrains, viewsheds are small. Proving realistic upper

bounds still open problem.

from: http://arxiv.org/pdf/1309.4323.pdf

http://arxiv.org/pdf/1309.4323.pdf

from: HH, MdB, KT 2009

• Several algorithms are known
• Based on horizons

• Idea: traverse triangles in order of increasing distance form viewpoint,
and update horizon.

• Bootstrap with divide-and-conquer

Viewsheds on triangulated terrains

Outline

• Viewsheds on grid terrains

1. straightforward algorithm

2. radial sweep algorithm

3. viewshed via horizon

• Viewsheds on TIN terrains
• quadratic size, worst-case construction

Beyond viewsheds

• Cumulative viewshed
• Total viewshed
• Find point of maximum/minimum visibility
• Find optimal paths

Total viewshed

• Input: elevation grid G
• Output: TV grid

• TV(i,j) = nb. visible points in viewshed(i,j)

• Algorithm?
• Running time?

total viewshed on kaweah (1M points)
time: 42.6 hrs

Summary
• Viewshed

• Straightforward solution
• Reasonably fast even for very large terrains (as long as they fit in

memory)
• Refined solutions expose elegant ideas

• Radial sweep + augmented RB-trees
• Horizons
• Carry on to triangulated terrains

• Accuracy
• Interpolation is important

• Total viewshed
• Straightforward solution: O(n2 n)
• Refined: O(n2 lg n)
• Too slow…

Need better algorithms!
Need parallel algorithms!

