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2D: Line simplification



https://algorithmist.files.wordpress.com/2011/10/lang.jpg

Line simplification

https://bost.ocks.org/mike/simplify/

http://mourner.github.io/simplify-js/

https://www.jasondavies.com/simplify/

Why?  

• storing polygonal lines at high level of detail consumes lots of memory  

• often high level of detail is not necessary 

Demos

https://algorithmist.files.wordpress.com/2011/10/lang.jpg


Line simplification

Given:  
• A polygonal line P = p1, p2, p3, …pn     (assume not self-intersecting) 
• An error threshold epsilon 

Want a set S of points  such that distance(S, P) < epsilon
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Line simplification

General approaches

• Greedy insertion  

• Start from a coarse approximation and add one point at a time, until all remaining 
points are within the tolerance  

• Decimation  

• Start with all points in P and eliminate one point at a time 

Outline

• Ramer-Douglas-Peucker algorithm (greedy insertion)   <——- most popular  

• Visalingam algorithm (decimation) 

• Imai-Iri algorithm 



Ramer-Douglas-Peucker algorithm

• Input:      P array of n points, epsilon  
• Output:   subset S of P such that distance(S,P) < epsilon

a
f

b c d
e

How to define the error, i.e. the distance between S and P?

P = {a,b,c,d,e,f}  

 S={a,f} 
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Ramer-Douglas-Peucker algorithm

How to define the error, i.e. the distance between S and P?

a
f

b c d
e

dist(P, S) = max {p in P, dist(p,S)}

• Input:      P array of n points, epsilon  
• Output:   subset S of P such that distance(S,P) < epsilon

P = {a,b,c,d,e,f}  

 S={a,f} 

For every p in P:  dist(p, af) = length of perpendicular from p to af
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Ramer-Douglas-Peucker algorithm

• Input:      P array of n points, epsilon  
• Output:   subset S of P such that distance(S,P) < epsilon

P

S

d(S,P) = max distance of a point in P to its segment in S



Ramer-Douglas-Peucker algorithm

//return a subset S of pi….pj so that dist(S, P) < eps 

DP(P, i, j, eps) 

  //basecase 

  if i+1 == j:   return [pi, pj] 

  else  

for k=i+1 to j-1:  compute the perpendicular- 
distance(pk, pipj) and find the point pk that’s 
farthest from pipj 

S1 = DP(P, i, k, eps) 

S2 = DP(P, k, j, eps) 

return [S1 + S2]      //S1 concatenated with S2

• Input:      P array of n points, epsilon  
• Output:   subset S of P such that distance(S,P) < epsilon
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Ramer-Douglas-Peucker algorithm

//return a subset S of pi….pj so that dist(S, P) < eps 

DP(P, i, j, eps) 

  //basecase 

  if i+1 == j:   return [pi, pj] 

  else  

for k=i+1 to j-1:  compute the perpendicular- 
distance(pk, pipj) and find the point pk that’s 
farthest from pipj 

S1 = DP(P, i, k, eps) 

S2 = DP(P, k, j, eps) 

return [S1 + S2]      //S1 concatenated with S2

• Input:      P array of n points, epsilon  
• Output:   subset S of P such that distance(S,P) < epsilon



Ramer-Douglas-Peucker algorithm

• Analysis  
• O(n2) worst case 

• Self-intersections  
• Is it possible that S self-intersects? 
• YES 

• Optimality  
• S is a subset that is within epsilon of P. Is it the best one? i.e. Is S is the 

smallest possible subset that approximates P within epsilon?  
• NO



Ramer-Douglas-Peucker algorithm

• Analysis  
• O(n2) worst case, O(n lg n) if good splits  

• Self-intersections  
• Is it possible that S self-intersects? 
• YES 

• Optimality  
• S is a subset that is within epsilon of P. Is it the best one? i.e. Is S is the 

smallest possible subset that approximates P within epsilon?  
• NO



Ramer-Douglas-Peucker algorithm

S can self-intersect



Ramer-Douglas-Peucker algorithm

S is not optimal (wrt size)



Ramer-Douglas-Peucker algorithm

• O(n2) worst case 
• S may be self-intersecting  
• S  not optimal 

• However, very popular in practice :)  

• Improvements 
• Run RDP with eps=0 and keep track of the splitting points and their 

distances.  Then, for a given eps,  run the algorithm,  but instead of 
searching for the splitter just use it. RDP in O(n) for any epsilon.  

• Improved to O(n lg n) worst-case using dynamic convex hulls 
[Hersheberger, Snoeyink]



Line simplification: Imai-Iri algorithm

• Idea: Define a directed graph G=(V,E) 
• vertices:  V = { p1, p2, …pn } 
• edges:  all (pi,pj) such that i<j and pipj is an epsilon-approximation for {pi……pj}       

             (an edge is an “admissible shortcut” for pi……pj)

• Input:      P array of n points, epsilon  
• Output:   subset S of P of minimum size such that distance(S,P) < epsilon

d({pi,…,pj}, pipj) < epsilon



epsilon



epsilon



p1

epsilon
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p1

epsilon

Any possible admissible shortcut from pi to pj is represented by an edge



p1

Claims:  
• There is at least one path in G from p1 to pn 
• Any path in G from p1 to pn is an epsilon-approximation for P



We want a path from p1 to pn with fewest number of edges.

p1

Claims:  
• There is at least one path in G from p1 to pn 
• Any path in G from p1 to pn is an epsilon-approximation for P



1. Construct G=(V,E) 

2. Compute shortest paths in G from p1 to pn

Line simplification: Imai-Iri algorithm

p1



1. Construct G=(V,E) 

2. Compute shortest paths in G from p1 to pn

Line simplification: Imai-Iri algorithm

O(n3) straightforward  
improved to O(n2) by Imai-Iri
O(V+E) via BFS

p1 • distance(S,P) < eps 
• O(n2) worst case 
• S  has optimal size 
• S may self-intersect



Line simplification: decimation 

•  Decimation approach 
• Each point is assigned an “importance”  score 
• Delete a point with low importance  
• Repeat

A point is important if removing it introduces a large error



Line simplification: Visvalingam & Whyatt algorithm  [VW ‘94]

• Each point pi is assigned the area of triangle pi-1pipi+1 

• Repeat  

• Delete point pi with lowest area 

• Recompute (only the scores of  pi-i   and pi+1  changes)
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Line simplification: Visvalingam & Whyatt algorithm  [VW ‘94] 

• Each point pi is assigned the area of triangle pi-1pipi+1 

• Repeat  

• Delete point pi with lowest area 

• Recompute (only the scores of  pi-i   and pi+1  changes)

• Analysis?  O(n lg n) 

• Self-intersecting ? YES 

• S  optimal (wrt size) ? NO 

• Errors accumulate   
• A point p is removed because it’s approximated well by its neighbors, 

assuming those neighbors are kept 
• But those  neighbors may be removed in the future  

=> No guarantee that S is within epsilon of P



• distance(S,P) < eps 
• O(n2) worst case 
• S  not optimal size 
• S may self-intersect 

• distance(S,P) < eps 
• O(n2) worst case 
• S  optimal size 
• S may self-intersect

Ramer-Douglas-Peucker algorithm  Imai-Iri algorithm

• distance(S,P) could be > eps 
• O(n lg n) worst case 
• S  not optimal size 
• S may self-intersect 

 Visvalingam-Whyatt algorithm

• Improved RDP: O(n lg n) [HS] 
• With some effort can avoid self-intersections 
• Simpler/faster algorithms for special cases 

(like monotone chains) 
• Algorithms that maintain topological 

constraints (like keep left-of relationships)

 Other results





Avoiding self-intersections: some ideas

• Pro-active:  

• Before adding a segment, check whether it intersects with existing segments 

• Retro-active:  

• run RDP(P, epsilon) [or Imai-Iri(), or..] 

• repeat  

• check if segments in S intersect 

• If YES, let s be a segment in S that causes intersections. Go back and 
refine it (add a point of maximum distance, even if its closer than epsilon) 

• until S causes no intersections



3D: Terrain simplification



satellite imagery

LIDAR point cloud

Terrain modelsData sources

grid to TIN

point cloud to TIN

point cloud to grid
grid to TIN



Terrain simplification

A terrain consists of:  
• A set  P = { (x1, y1, z1), (x2, y2, z2), ……, (xn, yn, zn) }  of terrain elevation samples 
• An interpolation method

P

n points

P could be a grid or a point cloud   

sometimes called a “height field”

Denote by  surf(P) the surface corresponding to terrain P



Terrain simplification

• Input:  A set P and an error threshold epsilon 

• Output:  A subset S of P such that distance(surf(S), surf(P)) < epsilon

P

n points

S

m points

dist(Surf(P}, Surf(S)) < epsilon



Outline

• Grid-to-TIN 
• Point-cloud-to-TIN 
• Point-cloud-to-grid 

• We’ll focus on grid-to-TIN simplification  
• The method can be extended to deal with arbitrary (non-grid) data 



Grid-to-TIN simplification



• WHY?   
• uniform resolution means a lot of data redundancy  
• grids get very large very fast 

• Example:    
• Area if approx. 800 km x 800 km 
• Sampled at: 

• 100 resolution:  64 million points   (128MB)
• 30m resolution:  640                       (1.2GB) 
• 10m resolution:  6400 = 6.4 billion (12GB) 
• 1m resolution:  600.4 billion            (1.2TB)

Grid-to-TIN simplification



Grid-to-TIN simplification 

• Incremental refinement (greedy insertion) 
• Start with an initial approximation  and add points one by one  [Garland & 

Heckbert, 1995] 

• Decimation methods 
• start with P and discard points (one by one) 
• E.g.: Lee’s drop heuristic 

• One-pass methods  
• pre-compute importance of points  
• select points that are considered important features and triangulate 

them 
• based on quad trees or kd-trees







Greedy insertion

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with 4 corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p)  
• select point p with largest error(p) 
• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles

find triangle that contains p and compute the vertical difference in height 
between p and its interpolation on the triangle

DONE() :: return  (max error below given epsilon) ?TRUE; FALSE; 

• Notation:  
• P = set of grid points 
• P’ = set of points in the TIN   
• TIN(P’): the TIN on P’



Greedy insertion

• Assume when inserting a point in a triangle,  split the triangle in 3



Come up with a “straightforward” implementation of greedy insertion and analyze it.



Greedy insertion: Analysis
     | P |                      | P’ | 

initially n                      4 = O(1)

iteration 1   n-1    1 + O(1)  

iteration 2   n-2                       2 + O(1)  

     .                           . 

     .                           . 

iteration k    n-k                       k

    

at the end    n-m                       m

• Notation:  
• m = nb of vertices in the simplified TIN at the end  (when error of P’ falls below epsilon) 

[usually m is a fraction of n (e.g. 5%)]



Greedy insertion— VERSION 1

ANALYSIS:   At iteration k:  we have O(n-k) points in P, O(k) points in P’ 
• RE-CALCULATION  

• compute the error of a point:  must search through all triangles to see which one contains it  
==> worst case O(k) 

• compute errors of all points ==> O(n-k) x O(k) 

• SELECTION:  select point with largest error: O(n-k)  

• INSERTION: insert p in P’, update TIN  ==> O(1)  
• unless each point stores the triangle that contains it, need to find the triangle that contains p 
• for a straightforward triangulation: split the triangle that contains p into 3 triangles ==> O(1) 

time

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• for each point p in P, compute error(p)  

• select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles

RE-CALCULATION
SELECTION
INSERTION



Greedy insertion— VERSION 1

Analysis worst case:   
• iteration k:   O((n-k) x k)  + O(n-k) + O(1) 

• overall: SUM { (n-k) x k } = …= O(m2n) 

• Note: dominant cost is re-calculation of errors  (which includes point location)  

• More on point location:  
• to locate the triangle that contains a given point, we “walk” (traverse) the TIN from triangle  

to triangle, starting from a triangle on the boundary  (aka DFS on the triangle graph).  
• we must be very unlucky to always take O(k)  
• simple trick:  start walking the TIN from the triangle that contained the previous point.  

• because points in the grid are spatially adjacent, most of the time a point will fall in the 
same triangle as the previous point or in one adjacent to it 

• average time for point location will be O(1) 

RE-CALC SELECT INSERT



Greedy insertion— VERSION 1

Worst-case:  O(m2n) 
• iteration k:   O(n-k) x O(k)  +  O(n-k)   +    O(1) 

• overall: SUM  {O(n-k) x k} = O(m2n)  

Average case:  O(mn) 
• trick to speed up point location ==> average time for pt location will be O(1)  
• iteration k:  O(n-k) x O(1)  + O(n-k)      + O(1) 

• SUM  {O(n-k)} = O(mn) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT

INSERT



Greedy insertion— VERSION 2

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• for each point p in P, compute error(p)  

• select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles 

• for all points in triangle that contains p: 

•  find the new triangles where they belong, re-compute their errors  

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.  

• Re-compute errors ONLY for points whose errors have changed 
• Each point p in P stores its error, error(p) 
• Each triangle stores a list of points inside it 



Greedy insertion— VERSION 2

Worst-case:  O(mn) 
• iteration k:             -        +  O(n-k)  +  O(1)  + O(n-k) x O(1) 

• overall: SUM  {O(n-k) } = O(mn)  

Average case:  O(mn) 
• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 

triangle 
• iteration k:           -       +    O(n-k) + O(1) + O((n-k)/k) x O(1) 

• SUM  {O(n-k)  + O((n-k)/k} = O(mn) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

SELECTION will be dominant!



Greedy insertion— VERSION3

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• use heap  to select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• for all points in the triangle that contains p:  

•  find the new triangles where they belong, re-compute their errors  

• update new errors in heap

• Version2, re-calculation goes down and selection becomes dominant  

• Version 3:  improve selection  
• store a heap of errors of all points in P



Greedy insertion— VERSION 3

Worst-case:  O(mn lg n) 
• iteration k:             -       + O(lg (n-k))  +  O(1)  + O(n-k) x O(lg (n-k)) 

• overall: SUM  {(n-k) lg (n-k)} = O(mn lg n)  

Average case:  O((m+n) lg2 n) 
• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 

triangle 
• iteration k:           -       +   O(lg (n-k)) + O(1) + O((n-k)/k) x O(lg (n-k)) 

• SUM  {lg (n-k)  + O((n-k)/k} = O((m+n) lg2 n) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

heap updates will be  dominant!



Greedy insertion— VERSION 4

• Version 3:   selection is down, but updating the heap is now dominant  

• Version 4:  store in heap only one point per triangle (point of largest error) 

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• use heap  to select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• for all points in the triangle that contains p:  

•  find the new triangles where they belong, re-compute their errors 

• find point with largest error per triangle   

• add these points (one per triangle) to the heap



Greedy insertion— VERSION 4

Worst-case:  O(mn) 
• iteration k:             -       + O(lg k)  +  O(1)  + O(n-k)xO(1) + O(1) x O(lg k) 

• overall: SUM  {lg k + O(n-k) } = O(mn)  

Average case:  O((m+n) lg n) 
• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 

triangle 
• iteration k:      -       +   O(lg k) +   O(1) + O((n-k)/k)x O(1) + O(1) x O(lg k) 

• SUM  {lg k  + O((n-k)/k} = O((m+n) lg n) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc



• The straightforward way to triangulate when adding new points runs in O(1) 
time but will create  long and skinny triangles 

Triangulations
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• The straightforward way to triangulate when adding new points runs in O(1) 
time but will create long and skinny triangles  

• Small angles are undesirable (numerical instability) 
• Good meshes have uniform triangles and angles that are neither too small 

nor too large 

Triangulations



Point-cloud-to-TIN ?

http://doc.cgal.org/latest/Surface_mesh_simplification/Illustration-Simplification-ALL.jpg

http://doc.cgal.org/latest/Surface_mesh_simplification/Illustration-Simplification-ALL.jpg


Triangulation



Triangulation

• A triangulation of a point set P  in 2D is a triangulation of the convex hull of P
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Triangulation

• A triangulation of a point set P  in 2D is a triangulation of the convex hull of P



Triangulation

• Many ways to triangulate a set of points P



Triangulation

• Many ways to triangulate a set of points P 
• Different ways to evaluate a triangulation  

• minimum angle 
• maximum degree 
• sum of edge lengths  
• … 

• A triangulation that maximizes the minimum angle across all triangles is 
called the Delaunay triangulation. It’s known how to computed in O( n lg n) 
time.  

• Algorithms for various other kinds of optimal triangulations are known.



Greedy insertion with Delaunay triangulation

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p) 
• select point p with largest error(p) 
• insert p in P’ , delete p from P, and  update TIN(P’) 

maintain TIN as a Delaunay triangulation of P’



grid (raster)

TIN

Point-cloud-to-TIN



Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p) 
• select point p with largest error(p) 
• insert p in P’, delete p from P, and update TIN(P’) 

What needs to change?

Brainstorming: Point-cloud-to-TIN ?



Point-cloud-to-grid

California Lidar data
http://www.opentopography.org/images/opentopo_images/garlock_slope.jpg

http://www.opentopography.org/images/opentopo_images/garlock_slope.jpg


Point-cloud-to-grid 

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.
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Brainstorming: Point-cloud-to-grid ?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.



Brainstorming: Point-cloud-to-grid ?

Sketch an algorithm to  compute a grid given a point cloud and a desired resolution.  Analyze it. 


