Algorithms for GIS
CSCI3225

Laura Toma

Bowdoin College

Simplification

2D: Line simplification 3D: Terrain simplification

2D: Line simplification

Line simplification

https://algorithmist.files.wordpress.com/2011/10/lang.jpg

Why*?
e storing polygonal lines at high level of detail consumes lots of memory

e often high level of detail is not necessary

Demos
https://bost.ocks.org/mike/simplify/

http://mourner.github.io/simplify-js/

https://www.jasondavies.com/simplify/

https://algorithmist.files.wordpress.com/2011/10/lang.jpg

Line simplification

Given:
« A polygonal line P =p1, ps, P3, ...pn (@Ssume not self-intersecting)
 An error threshold epsilon

Want a set S of points such that distance(S, P) < epsilon

Line simplification

Given:
« A polygonal line P =p1, ps, P3, ...pn (@Ssume not self-intersecting)
 An error threshold epsilon

Want a set S of points such that distance(S, P) < epsilon

- epsilon: small epsilon: large
Line Simplification plification
/H‘““‘*--------___ - -
T /
/ J
0.00011px2 / 75.77% 63052/ 1.06% |

S
* 9%
\

o |
AT T

Line simplification

Given:
« A polygonal line P =p1, ps, P3, ...pn (@Ssume not self-intersecting)
e An error threshold epsilon

Want a set S of points such that distance(S, P) < epsilon

epsilon: small epsilon: large
m o, P 72 px2.
* Q
{Q' ctions?
"‘5 ‘lg‘ &)
-. @v’ . F; ;\ (‘ (‘IT-D r\.‘i‘
‘q". 3. Y) - :
X ' ¢ =
7
N
F :

Ay

Line simplification

General approaches
 (Greedy insertion

o Start from a coarse approximation and add one point at a time, until all remaining
points are within the tolerance

e Decimation

e Start with all points in P and eliminate one point at a time

Outline
 Ramer-Douglas-Peucker algorithm (greedy insertion) <——— most popular
e Visalingam algorithm (decimation)

* Imai-Iri algorithm

Ramer-Douglas-Peucker algorithm

« |nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

How to define the error, i.e. the distance between S and P?

P ={a,b,c,d,e,f}

S={a,f}

Ramer-Douglas-Peucker algorithm

« |nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

How to define the error, i.e. the distance between S and P?

P ={a,b,c,d,e,f}
S={a,f} - f
d

For every p in P: dist(p, af) = length of perpendicular from p to af

Ramer-Douglas-Peucker algorithm

« |nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

How to define the error, i.e. the distance between S and P?

P ={a,b,c,d,e,f}

S={a,f}

d

For every p in P: dist(p, af) = length of perpendicular from p to af

dist(P, S) = max {p in P, dist(p,S)}

Ramer-Douglas-Peucker algorithm

« |nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

Ramer-Douglas-Peucker algorithm

« |nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

Ramer-Douglas-Peucker algorithm

« |nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

BT

d(S,P) = max distance of a point in P to its segment in S

Ramer-Douglas-Peucker algorithm

 [nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

DP(P, i, j, eps)

if i+1 == j: return [pi, pjl
else

for k=i+1 to j-1: compute the perpendicular-
distance(pk, pipj) and find the point pkx that’s
farthest from pipj

S1 = DP(P, 1, k, eps)
52 = DP(P, k, j, eps)
return [S1 + S2]

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

- T
,/

Ramer-Douglas-Peucker algorithm

epsilon

- T
,/

Ramer-Douglas-Peucker algorithm

epsilon

- RSN
’/

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

Ramer-Douglas-Peucker algorithm

epsilon

;

Ramer-Douglas-Peucker algorithm

 [nput: P array of n points, epsilon

 Qutput: subset S of P such that distance(S,P) < epsilon

DP(P, i, j, eps)

if i+1 == j: return [pi, pjl
else

for k=i+1 to j-1: compute the perpendicular-
distance(pk, pipj) and find the point pkx that’s
farthest from pipj

S1 = DP(P, 1, k, eps)
52 = DP(P, k, j, eps)
return [S1 + S2]

Ramer-Douglas-Peucker algorithm

 Analysis

e Self-intersections

* |[sit possible that S self-intersects?

e Optimality

e Sis asubsetthat is within epsilon of P. Is it the best one? i.e. Is S is the
smallest possible subset that approximates P within epsilon?

Ramer-Douglas-Peucker algorithm

 Analysis

 O(n2) worst case, O(n Ig n) if good splits

e Self-intersections
* |[sit possible that S self-intersects?

e YES

e Optimality

e Sis asubsetthat is within epsilon of P. Is it the best one? i.e. Is S is the
smallest possible subset that approximates P within epsilon?

« NO

Ramer-Douglas-Peucker algorithm

S can self-intersect

Ramer-Douglas-Peucker algorithm

S is not optimal (wrt size)

Ramer-Douglas-Peucker algorithm

O(n2) worst case

S may be self-intersecting

S not optimal

However, very popular in practice :)

Improvements

 Run RDP with eps=0 and keep track of the splitting points and their
distances. Then, for a given eps, run the algorithm, but instead of
searching for the splitter just use it. RDP in O(n) for any epsilon.

 Improved to O(n Ig n) worst-case using dynamic convex hulls
[Hersheberger, Snoeyink]

Line simplitication: Imai-Iri algorithm

Input: P array of n points, epsilon

Qutput: subset S of P of minimum size such that distance(S,P) < epsilon

ldea: Define a directed graph G=(V,E)

e vertices: V={p1, p2, ...0n}

« edges: all (pi,p;) such that i<j and pip; is an epsilon-approximation for {pi
A

(an edge is an “admissible shortcut” for pi...... o))

d({pi,...,pi}, pipj) < epsilon

epsilon
+—>

epsilon
+—>

epsilon

epsilon
+—>

epsilon

Any possible admissible shortcut from pi to pjis represented by an edge

Claims:
 There is at least one path in G from p+ to pn

 Any path in G from p1 to pn is an epsilon-approximation for P

Claims:
 There is at least one path in G from p+ to pn

 Any path in G from p1 to pn is an epsilon-approximation for P

We want a path from p1 to pn with fewest number of edges.

Line simplitication: Imai-Iri algorithm

1. Construct G=(V,E)
2. Compute shortest paths in G from p1 to pn

Line simplitication: Imai-Iri algorithm

O(n3) straightforward
1. Construct G=(V,E) < improved to O(n2) by Imai-Iri

2. Compute shortest paths in G from p1to pn < O(V+E) via BFS

P+ e distance(S,P) < eps

 O(n2) worst case

S has optimal size

S may self-intersect

Line simplitication: decimation

e Decimation approach
e Each point is assigned an “importapce” score
e Delete a point with low importance

e Repeat

A point is important if removing it introduces a large error

Line simplification: Visvalingam & Whyatt algorithm [VW ‘94]

e Fach point pi is assigned the area of triangle pi-1pipPi+1
e Repeat
® Delete point p; with lowest area

e Recompute (only the scores of pii and pi+1 changes)

Line simplification: Visvalingam & Whyatt algorithm [VW ‘94]

e Fach point pi is assigned the area of triangle pi-1pipPi+1
e Repeat
® Delete point p; with lowest area

e Recompute (only the scores of pii and pi+1 changes)

-
- -
- -

- -
-
N p——"

- -
- -
-- - -
-

2

The purple triangle is the smallest, so the fifth point is removed first. This removal requires
recomputing the area of the adjacent red triangle:

https://bost.ocks.org/mike/simplify/

Line simplification: Visvalingam & Whyatt algorithm [VW ‘94]

e Fach point pi is assigned the area of triangle pi-1pipPi+1
e Repeat
® Delete point p; with lowest area

e Recompute (only the scores of pii and pi+1 changes)

e Analysis?
e Self-intersecting ?

e S optimal (wrt size) ?

Line simplification: Visvalingam & Whyatt algorithm [VW ‘94]

e Fach point pi is assigned the area of triangle pi-1pipPi+1
e Repeat
® Delete point p; with lowest area

e Recompute (only the scores of pii and pi+1 changes)

e Analysis? O(nlgn)
e Self-intersecting ? YES

e S optimal (wrt size) ? NO

Line simplification: Visvalingam & Whyatt algorithm [VW ‘94]

e Each point pjis assigned the area of triangle pi-1PiPi+1
e Repeat
® Delete point p; with lowest area

e Recompute (only the scores of pii and pi+1 changes)

e Analysis? O(nlgn)

e Self-intersecting ? YES

e S optimal (wrt size) ? NO
e [Errors accumulate

* A point p is removed because it's approximated well by its neighbors,
assuming those neighbors are kept

e But those neighbors may be removed in the future

=> No guarantee that S is within epsilon of P

Ramer-Douglas-Peucker algorithm Imai-Iri algorithm

distance(S,P) < eps distance(S,P) < eps

O(n2) worst case e O(n2) worst case
S not optimal size « S optimal size
S may self-intersect e S may self-intersect

Visvalingam-Whyatt algorithm

Other results
* Improved RDP: O(n Ig n) [HS]

distance(S,P) could be > eps « With some effort can avoid self-intersections

O(n Ig n) worst case « Simpler/faster algorithms for special cases
(like monotone chains)

n imal siz intai i
S not optimal size e Algorithms that maintain topological

S may self-intersect constraints (like keep left-of relationships)

Mark de Berg Marec van Kreveld

Dept. of Computer Science Dept. of Computer Science
Utrecht University Utrecht University
P.0.Box 80.089 P.0.Box 80.089
3508 TB Utrecht 3508 TB Utrecht
The Netherlands The Netherlands
markdb@es.run.nl marc@cs.ruu.nl

Stefan Schirra
Max-Planck-Institut fur Informatik
Im Stadtwald
D-66123 Saarbriicken
Germany
stschirr@mpi-sh.mpg.de

England

Canterbury Canterbury

Maastricht

France

Figure 1: Part of a map of Western Europe, and an inconsistent simplification of the subdi-
vision.

Avoiding self-intersections: some ideas

e Pro-active:

e Before adding a segment, check whether it intersects with existing segments

* Retro-active:
e run RDP(P, epsilon) [or Imai-Iri(), or..]
* repeat
e check if segments in S intersect

o [YES, let s be a segment in S that causes intersections. Go back and
refine it (add a point of maximum distance, even if its closer than epsilon)

e until S causes no intersections

3D: Terrain simplification

Data sources Terrain models

2 2 a 48

b
S

grid to TIN =SF S8 S JE - 0 =

grid to TIN

LIDAR point cloud

Terrain simplification

A terrain consists of:
* Aset P={(x1, Vi, 21), (X2, Y2, Z2),, (Xn, Yn, Zn) } Of terrain elevation samples

 An interpolation method

Denote by surf(P) the surface corresponding to terrain P

P could be a grid or a point cloud

sometimes called a “height field”

n points

Terrain simplification

* Input: A set P and an error threshold epsilon

 Qutput: A subset S of P such that distance(surf(S), surf(P)) < epsilon

n points m points

dist(Surf(P}, Surf(S)) < epsilon

Outline

e Grid-to-TIN
e Point-cloud-to-TIN

e Point-cloud-to-grid

 We'll focus on grid-to-TIN simplification

 The method can be extended to deal with arbitrary (non-grid) data

Grid-to-TIN simplification

(o]

4

26

25

21

3

3

Grid-to-TIN simplification

WHY??
e uniform resolution means a lot of data redundancy

e Qgrids get very large very fast

« Example:
 Area if approx. 800 km x 800 km
« Sampled at:
100 resolution: 64 million points (128MB)
 30m resolution: 640 (1.2GB)
 10m resolution: 6400 = 6.4 billion (12GB)
 1m resolution: 600.4 billion (1.2TB)

Grid-to-TIN simplification

* Incremental refinement (greedy insertion)

e Start with an initial approximation and add points one by one [Garland &
Heckbert, 1995]

Fast Polygonal Approximation of
Terrains and Height Fields

Michael Garland and Paul S. Heckbert
September 19, 1995
CMU-CS-95-181

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

email: {garland,ph}@cs.cmu.edu
tech report & C++ code: http://www.cs.cmu.edu/ garland/scape

Abstract

Several algorithms for approximating terrains and other height fields using polygonal meshes are
described, compared, and optimized. These algorithms take a height field as input, typically a
rectangular grid of elevation data H(x,y), and approximate it with a mesh of triangles, also known
as a triangulated irregular network, or TIN. The algorithms attempt to minimize both the error
and the number of triangles in the approximation. Applications include fast rendering of terrain
data for flight simulation and fitting of surfaces to range data in computer vision. The methods
can also be used to simplify multi-channel height fields such as textured terrains or planar color
images.

The most successful method we examine is the greedy insertion algorithm. It begins with a simple
triangulation of the domain and, on each pass, finds the input point with highest error in the current
approximation and inserts it as a vertex in the triangulation. The mesh is updated either with
Delaunay triangulation or with data-dependent triangulation. Most previously published variants
of this algorithm had expected time cost of O(mn) or O(nlogm + m?), where n is the number of
points in the input height field and m is the number of vertices in the triangulation. Our optimized
algorithm is faster, with an expected cost of O((m+mn)logm). On current workstations, this allows
one million point terrains to be simplified quite accurately in less than a minute. We are releasing
a C++ implementation of our algorithm.

Notation:

Greedy insertion + P =set of grid points

P’ = set of points in the TIN

« TIN(P): the TIN on P

Algorithm:

« P ={all grid points}, P’ = {4 corner points}

e |Initialize TIN to two triangles with 4 corners as vertices
e while not DONE() do

for eagh point p in P, compute error(p)
select point p with largest error(p)

insert p in P’, delete p from P and update TIN(P’)

* / create 3 new triangles

DONE() ::

find triangle that contains p and compute the vertical difference in height
between p and its interpolation on the triangle

return (max error below given epsilon) ?TRUE; FALSE;

Greedy insertion

 Assume when inserting a point in a triangle, split the triangle in 3

Come up with a “straightforward” implementation of greedy insertion and analyze it.

Greedy insertion: Analysis

| P | P’
initially n 4=0(1)
iteration 1 N-1 1+ O(1)
iteration 2 n-2 2+ O(1)
iteration k n-K K
at the end n-m m

* Notation:
* m = nb of vertices in the simplified TIN at the end (when error of P’ falls below epsilon)

lusually mis a fraction of n (e.g. 5%)]

Algorithm:

Greedy insertion— VERSION 1 |- r=taigiapoints). P = (4 cormer points)

Initialize TIN to two triangles with 4 corners as vertices

while not DONE() do

RE-CALCULATION > o for each point p in P, compute error(p)
SELECTION » + select point p with largest error(p)
INSERTION » * insertpinP’, delete p from P and update TIN(F’)

create 3 new triangles

ANALYSIS: At iteration k: we have O(n-k) points in P, O(k) points in P’
« RE-CALCULATION

compute the error of a point: must search through all triangles to see which one contains it
==> worst case O(k)

compute errors of all points ==> O(n-k) x O(k)

SELECTION: select point with largest error: O(n-k)

 INSERTION: insert p in P’, update TIN ==> O(1)

unless each point stores the triangle that contains it, need to find the triangle that contains p

for a straightforward triangulation: split the triangle that contains p into 3 triangles ==> O(1)
time

Greedy insertion— VERSION 1

Analysis worst case:

iteration k: O((n-K) xk) + O(n-k) + OQK
4 N
RE-CALC SELECT INSERT

overall: SUM { (n-k) x k } = ...= O(m?n)

* Note: dominant cost is re-calculation of errors (which includes point location)

 More on point location:

to locate the triangle that contains a given point, we “walk” (traverse) the TIN from triangle
to triangle, starting from a triangle on the boundary (aka DFS on the triangle graph).

we must be very unlucky to always take O(k)
simple trick: start walking the TIN from the triangle that contained the previous point.

* Dbecause points in the grid are spatially adjacent, most of the time a point will fall in the
same triangle as the previous point or in one adjacent to it

average time for point location will be O(1)

Greedy insertion— VERSION 1

Worst-case: O(ma2n)

e teration k: O(n-k) xO(k) + O(n-k) + O(1)
4 4 4
RE-CALC SELECT INSERT

o overall: SUM {O(n-k) x k} = O(m=2n)

Average case: O(mn)
e trick to speed up point location ==> average time for pt location will be O(1)

e jteration ki O(n-k) xO(1) + O(n-k) + O(1)
4 4 4
RE-CALC SELECT INSERT

« SUM {O(n-k)} = O(mn)

Greedy insertion— VERSION 2

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.

v

 Re-compute errors ONLY for points whose errors have changed
e FEach point p in P stores its error, error(p)

« Each triangle stores a list of points inside it

Algorithm:
« P ={all grid points}, P’ = {4 corner points}
 Initialize TIN to two triangles with 4 corners as vertices
 while not DONE() do
° f.e.r_eaeh%ﬂ’[_p_m_%eeﬂqﬁu{e_e{_%} | ’
* select point p with largest error(p)
« insertpinP’, delete p from P and update TIN(P’)
e create 3 new triangles
e for all points in triangle that contains p:

. find the new triangles where they belong, re-compute their errors

Greedy insertion— VERSION 2

Worst-case: O(mn)

e jteration k: - + O(n-k) + O(1) + O(n-k) x O(1)
4 4 4
RE-CALC SELECT INSERT + re-calc

« overall: SUM {O(n-k) } = O(mn)

Average case: O(mn)

e if points are uniformly distributed in the triangles ==> O((n-k)/k) points per

triangle
e teration k: - + O(n-k) + O(1) + O((n-k)/k) x O(1)
4 4 4
RE-CALC SELECT INSERT + re-calc

« SUM {O(n-k) + O((n-k)/k} = O(m

SELECTION will be dominant!

Greedy insertion— VERSIONS

Version2, re-calculation goes down and selection becomes dominant

+

Version 3: improve selection

« store a heap of errors of all points in P

Algorithm:

P = {all grid points}, P’ = {4 corner points}
Initialize TIN to two triangles with 4 corners as vertices

while not DONE() do

 use heap to select point p with largest error(p)
« insertpinP’, delete p from P and update TIN(P’)
e for all points in the triangle that contains p:

. find the new triangles where they belong, re-compute their errors

e update new errors in heap

Greedy insertion— VERSION 3

Worst-case: O(mn Ig n)

e |teration k: - + O(Ig (n-k)) + O(1) + O(n-k) x O(lg (n-k))
4 4 4
RE-CALC SELECT INSERT + re-calc

e overall: SUM {(n-k) Ig (n-k)} = O(mn Ig n)

Average case: O((m+n)Ig2n)

e if points are uniformly distributed in the triangles ==> O((n-k)/k) points per

triangle
e Iteration k: - + Of(lg (n-k)) + O(1) + O((n-k)/k) x O(Ig (n-k))
4 4 4
RE-CALC SELECT INSERT + re-calc

« SUM {lg (n-k) + O((n-k)/k} = O((m+n) Ig2 n) /

heap updates will be dominant!

Greedy insertion— VERSION 4

 \Version 3: selection is down, but updating the heap is now dominant

+

 \ersion 4: store in heap only one point per triangle (point of largest error)

Algorithm:
P ={all grid points}, P’ = {4 corner points}
* Initialize TIN to two triangles with 4 corners as vertices
* while not DONE() do
* use heap to select point p with largest error(p)
* insertpinP’, delete p from P and update TIN(P’)
* for all points in the triangle that contains p:

. find the new triangles where they belong, re-compute their errors

* find point with largest error per triangle

* add these points (one per triangle) to the heap

Greedy insertion— VERSION 4

Worst-case: O(mn)

e |teration k: - + O(lgk) + O(1) + O(n-k)xO(1) + O(1) x O(lg k)
4 4 4
RE-CALC SELECT INSERT + re-calc

e overall: SUM {lg k + O(n-k) } = O(mn)

Average case: O((m+n)Ig n)

e if points are uniformly distributed in the triangles ==> O((n-k)/k) points per

triangle
e terationk: - + O(lgk)+ O(1) + O((n-k)/k)x O(1) + O(1) x O(lg k)
4 4 4
RE-CALC SELECT INSERT + re-calc

« SUM {lgk + O((n-k)/k} = O((m+n) Ig n)

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

Triangulations

e The straightforward way to triangulate when adding new points runs in O(1)
time but will create long and skinny triangles

 Small angles are undesirable (numerical instability)

 (Good meshes have uniform triangles and angles that are neither too small
nor too large

http://doc.cgal.org/latest/Surface mesh simplification/lllustration-Simplification-ALL.jpg

http://doc.cgal.org/latest/Surface_mesh_simplification/Illustration-Simplification-ALL.jpg

Triangulation

Triangulation

e A triangulation of a point set P in 2D is a triangulation of the convex hull of P

Triangulation

e A triangulation of a point set P in 2D is a triangulation of the convex hull of P

Triangulation

e A triangulation of a point set P in 2D is a triangulation of the convex hull of P

Triangulation

 Many ways to triangulate a set of points P

Triangulation

 Many ways to triangulate a set of points P
e Different ways to evaluate a triangulation
e minimum angle
e maximum degree

 sum of edge lengths

* Atriangulation that maximizes the minimum angle across all triangles is
called the Delaunay triangulation. It's known how to computed in O(n Ig n)
time.

* Algorithms for various other kinds of optimal triangulations are known.

Greedy insertion with Delaunay triangulation

Algorithm:

« P ={all grid points}, P’ = {4 corner points}
* [nitialize TIN to two triangles with corners as vertices
 while not DONE() do

e for each point p in P, compute error(p)

e select point p with largest error(p)

e insertpinP’, delete p from P, and update TIN(P’)

\

maintain TIN as a Delaunay triangulation of P’

Point-cloud-to-TIN

Brainstorming: :Piqiratjcloud—to—TIN ?

3333333

What needs to change”

Algorithm:
« P ={all grid points}, P’ = {4 corner points|
* [nitialize TIN to two triangles with corners as vertices
e while not DONE() do
e for each point p in P, compute error(p)
e select point p with largest error(p)

e insertpin P, delete p from P, and update TIN(P’)

Point-cloud-to-grid

California Lidar data

http://www.opentopography.org/images/opentopo images/garlock slope.jpg

21

24

32

A

27

a1

a7

http://www.opentopography.org/images/opentopo_images/garlock_slope.jpg

Point-cloud-to-grid

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.

Brainstorming: Point-cloud-to-grid ?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.

Brainstorming: Point-cloud-to-grid ?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.

Brainstorming: Point-cloud-to-grid ?

Sketch an algorithm to compute a grid given a point cloud and a desired resolution. Analyze it.

