
Laura Toma

Bowdoin College

Algorithms for GIS
csci3225

Memory-efficient algorithms

(Standard) algorithm analysis

• Running time = number of instructions in the RAM model of computation

RAM model = abstract model of a machine
• all arithmetic/logic/control instructions
• every instruction takes 1 step
• each memory access takes 1 step
• memory is infinite (data always fits in memory)

Algorithms run on real machines

CPU L2 RAM disk…L1

larger, slower

memory hierarchy

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/

The memory hierarchy

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/memory_hierarchy1367201501848.png

2 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 2.1 The levels in a typical memory hierarchy in a server computer shown on top (a) and in a personal mobile
device (PMD) on the bottom (b). As we move farther away from the processor, the memory in the level below becomes slower
and larger. Note that the time units change by a factor of 109—from picoseconds to milliseconds—and that the size units change
by a factor of 1012—from bytes to terabytes. The PMD has a slower clock rate and smaller caches and main memory. A key
difference is that servers and desktops use disk storage as the lowest level in the hierarchy while PMDs use Flash, which is built
from EEPROM technology.

Example

RAM is 50 times slower than L1

The memory hierarchy

• At all levels, data is organized and moved in blocks/pages
• Each level acts as a “cache” for the next level (stores most recently used blocks)
• When CPU needs to do a memory access, it first checks if the block that

contains that data is (already) in the cache
• cache hit: the block that contains the data item is in cache; read it from cache
• cache miss: the block that contains the data item is not in cache; read the

block in cache (and, if necessary, evict a block to make space)
• cache replacement policy: OPT, LRU, FIFO, ..

CPU L2 RAM diskL1
blocks blocks blocks blocks

L3

3 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance, measured as the difference in the time
between processor memory requests (for a single processor or core) and the latency of a DRAM access, is plotted over time.
Note that the vertical axis must be on a logarithmic scale to record the size of the processor–DRAM performance gap. The memory
baseline is 64 KB DRAM in 1980, with a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The
processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement until 2000, a 1.20 improvement between 2000 and
2005, and no change in processor performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1.

Why does it matter anyways? Aren’t computers getting faster?

Refined algorithm analysis

• CPU analysis

• number of instructions

• Memory access analysis

• number of blocks transferred between levels of the memory hierarchy

CPU L2 RAM diskL1
blocks blocks blocks blocks

L3

Memory access analysis: The ideal-cache model

Performance measure: number of cache misses
Q(n) = Q(n, M, B)

• Consider only two levels of the memory
hierarchy

• Cache size M bytes
• Cache block (line) size B bytes
• Assume LRU or FIFO block replacement
• Fully associative cache (a block can go

anywhere
• Count only one direction (what goes in

must come out)
memory

block
CPU

cache
M

B

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Analysis in the ideal-cache model
Example: Scanning

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

cache:

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

B=32 bytes = 8 ints

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…memory:

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

6 4 4 1 5 2 1 4

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

sum += a[i]

Example: Scanning

Notation:
• n: array size
• M: cache size
• B: block size

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

6 4 4 1 5 2 1 4
Total: O(n/B) cache misses

memory:

B=32 bytes = 8 ints

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:

memory:

B=32 bytes = 8 ints

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:

memory:

B=32 bytes = 8 ints

6 4 4 1 5 2 1 4

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:

memory:

B=32 bytes = 8 ints

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:
6 4 4 1 5 2 1 4

memory:

B=32 bytes = 8 ints

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:
6 4 4 1 5 2 1 4

memory:

B=32 bytes = 8 ints

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:
6 4 4 1 5 2 1 4

1 3 1 7 4 5 9 3

memory:

B=32 bytes = 8 ints

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements

sum =0

for (i=0; i<n; i++)

k = random() %n ;

sum += a[k]

Example: Random access

Notation:
• n: array size
• M: cache size
• B: block size

cache:
6 4 4 1 5 2 1 4

1 3 1 7 4 5 9 3 Total: O(n) cache misses

memory:

B=32 bytes = 8 ints

• Summary
• Sequential access: O(n/B) cache misses
• Random accesses: O(n) cache misses

• Spatial locality
• If a memory location is accessed, it’s likely that a nearby memory location

will be accessed in the near future
• Temporal locality

• If a memory location is accessed, it’s likely that the same location will be
accessed again in the near future

• Memory-efficient algorithms need to improve (spatial and/or temporal) locality

Memory-efficient algorithms

Three algorithms:
• standard
• blocked/tiling
• divide-and-conquer

• Illustrate the analysis and design of memory-efficient algorithms

Given two n-by-n matrices, compute their product

= xc a b

n

n

n

n

n

n

Matrix multiplication

Matrix multiplication: standard

//we’ll use linearized arrays for efficiency

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

//c[i][j] += a[i][k]*b[k][j]

c[i*n+j] += a[i*n+k]*b[k*n+j]

}

Matrix multiplication: standard

//we’ll use linearized arrays for efficiency

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

//c[i][j] += a[i][k]*b[k][j]

c[i*n+j] += a[i*n+k]*b[k*n+j]

}

CPU: O(n3) cache-misses:

Cache-miss analysis
c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i*n+j] += a[i*n+k]*b[k*n+j]

}

= xc a b

n

n

n

n

n

n

Assume B << n

Notation:
• n: array size
• M: cache size
• B: block size

Cache-miss analysis
c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i*n+j] += a[i*n+k]*b[k*n+j]

}

= x

n

n

n

n

n

n

Assume B << n

Notation:
• n: array size
• M: cache size
• B: block size

bac

Cache-miss analysis
c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i*n+j] += a[i*n+k]*b[k*n+j]

}

= x

n

n

n

n

n

n

Assume B << n

Notation:
• n: array size
• M: cache size
• B: block size

bac

each element in c accesses a row of a (n/B blocks) and a column of B (n blocks)

Cache-miss analysis
c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i*n+j] += a[i*n+k]*b[k*n+j]

}

= x

n

n

n

n

n

n

Assume B << n

Notation:
• n: array size
• M: cache size
• B: block size

bac

cache-misses: O((n + n/B)n2) = O(n3)

if n < M/B: b columns share same blocks ==>O(n3/B)

Matrix multiplication:blocked

= x

c a b

Do it block by block, instead of element by element.

r
r

Matrix multiplication:blocked

= x

c a b

Partition the matrices in blocks of size r-by-r

Denote Cij: the r-by-r block with upper-left corner (i,j)

Then Cij = Ai0B0j + …

r
r

Matrix multiplication:blocked

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i+=r)

 for (j=0; j<n; j+=r)

 //compute block of c with upper left corner at(i,j)

 for (k=0; k<n; k+=r)

 //Cij += Aik*Bkj

}

//<———————- matrix multiplication

Matrix multiplication:blocked

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i+=r)

 for (j=0; j<n; j+=r)

 //compute block of c with upper left corner at(i,j)

 for (k=0; k<n; k+=r)

 //Computes Aik*Bkj

 for (ii=i; ii<i+r; ii++)

 for (jj=j; jj<j+r; jj++)

 for (kk=k; kk<k+r; kk++)

 c[ii*n+jj] += a[ii*n+kk]*b[kk*n+jj]

}

Cache-miss analysis

Notation:
• n: array size
• M: cache size
• B: block size

= xc a b

n

n

n

n

n

n

r
r

For each block of c:
read n/r blocks in a and n/r blocks in b

In total there are (n/r)2 blocks in c

We’ll chose the size of a block such that three blocks fit in
cache: 3r2 = M, or r = Theta(sqrt M)
How to chose r?

Cache-miss analysis

Notation:
• n: array size
• M: cache size
• B: block size

= xc a b

n

n

n

n

n

n

r
r

For each block of c:
read n/r blocks in a and n/r blocks in b

In total there are (n/r)2 blocks in c

We’ll chose the size of a block such that three blocks fit in
cache: 3r2 = M, or r = Theta(sqrt M)

r

r

B

How many cache misses to read a block of size r-by-r, in a matrix laid out in row-major order?

n

n

n

n

c

r

r

How many cache misses to read a block of size r-by-r, in a matrix laid out in row-major order?

n

n
B

How many blocks span a sub-matrix of size r-by-r, in a matrix laid out in row-major order?

r

r

How many cache misses to read a block of size r-by-r, in a matrix laid out in row-major order?

n

n

cache-misses: O(r2/B + r)

==> Reading a block of size M takes O(M/B + sqrt M)

Note that O(M/B + sqrt M) is O(M/B) when M>B2

this term is annoying but it’s there

tall cache assumption

n

n

c

A cache is called tall if M>B2.

Reading a block of size M in a matrix laid out in row-major
order takes O(M/B)cache misses with the tall cache assumption.

If the cache is not tall, it takes O(sqrt M) cache misses.

n

n

c

Cache-miss analysis

Notation:
• n: array size
• M: cache size
• B: block size

= xc a b

n

n

n

n

n

n

r
r

Assume the size of a matrix block is chosen such that
three blocks fit in cache: 3r2 < M, or r = sqrt M

For each block of c:
read n/r blocks in a and n/r blocks in b

In total there are (n/r)2 blocks in c

A block has size O(M) and reading it takes O(M/B) misses with
the tall cache assumption.

TOTAL: (n/r)2 2n/r r2/B

Cache-miss analysis

Notation:
• n: array size
• M: cache size
• B: block size

= xc a b

n

n

n

n

n

n

r
r

TOTAL: O(n3/(B sqrt M))

The point is, it’s much better (although messy to analyze)

Summary
Notation:
• n: array size
• M: cache size
• B: block size

Example:

cache block B = 32 bytes = 4 doubles

cache size M = 768 elements ==> b = 16 elements

standard: O(n3)

blocked: O(n3/64) <———————— 64 times fewer cache misses

standard: O(n3)
blocked: O(n3/(B sqrt M))

Can we do better?

standard: O(n3)
blocked: O(n3/(B sqrt M))

Matrix multiplication: divide & conquer

Matrix multiplication: divide & conquer

= x

c a b

Assume n is a power of 2.

Matrix multiplication: divide & conquer

= x

c a b

Assume n is a power of 2.

Matrix multiplication: divide & conquer

Assume n is a power of 2.

= x

c a b

11 12

21 22

11 12

21 22

11 12

21 22

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute a11b12 …

compute a12b22

compute a21b11

compute a22b21

compute a21b12

compute a22b22

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

Matrix multiplication: divide & conquer

8 recursive calls to multiply matrices of size n/2-by-n/2

a11, a12, … b11, b12, …can be created
by copying from a and b

implement w/o copying?

can these sums be avoided?

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute a11b12 …

compute a12b22

compute a21b11

compute a22b21

compute a21b12

compute a22b22

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

Matrix multiplication: divide & conquer

8 recursive calls to multiply matrices of size n/2-by-n/2

CPU analysis

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute a11b12 …

compute a12b22

compute a21b11

compute a22b21

compute a21b12

compute a22b22

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

Matrix multiplication: divide & conquer

8 recursive calls to multiply matrices of size n/2-by-n/2

CPU analysis
• T(n) = 2 if n=1

• T(n) = 8T(n/2) + n2 otherwise

solves to O(n3)

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute a11b12 …

compute a12b22…

compute a21b11…

compute a22b21…

compute a21b12…

compute a22b22…

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

Matrix multiplication: divide & conquer

8 recursive calls to multiply matrices of size n/2-by-n/2

Cache miss analysis
• C(n) = 8C(n/2) + O(n2/B)
• C(n) = ?? basecase

Notation:
• n: array size
• M: cache size
• B: block size

Matrix multiplication: divide & conquer

Cache miss analysis:
• C(n) = 8C(n/2) + O(n2/B)
• C(n) = ?? for basecase

What is a good base-case to analyze cache misses?

The recursive algorithm proceeds until matrix size =1.
Let n’ be the size at which a, b, c all fit in cache, ie 3 n’2 = M

From that point on, the algorithm keeps dividing and recursing. No matter in what
order the elements of the matrices are brought in cache, once all blocks have been
loaded, they stay in cache, since they fit in cache.
Reading a matrix of size O(M) takes O(M/B) with the tall cache assumption .

==> Basecase: C(sqrt M) = O(M/B)

This solves to O(n3/(B sqrt M)).

Notation:
• n: array size
• M: cache size
• B: block size

Matrix layout

• a11, a12, … b11, b12, …are not contiguous in a. Reading a matrix of size r-by-r takes O(r2/B + r) misses,
which is O(r2/B) with the tall cache assumption. However the O(r) term will add to the constant factors.

• Can this be avoided?

= x

c a b

11 12

21 22

11 12

21 22

11 12

21 22

Matrix layout

• a11, a12, … b11, b12, …are not contiguous in a. Reading a matrix of size r-by-r takes O(r2/B + r) misses,
which is O(r2/B) with the tall cache assumption. However the O(r) term will add to the constant factors.

• Can this be avoided?

= x

c a b

11 12

21 22

11 12

21 22

11 12

21 22

Yes, with a different matrix layout!
More on this next time

standard: O(n3)
blocked: O(n3/(B sqrt M))
divide-and-conquer: O(n3/(B sqrt M))

Matrix multiplication: summary

Cache miss analysis:

Notation:
• n: array size
• M: cache size
• B: block size

Matrix multiplication: summary

void mmult(double*a, double*b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i+=r)

 for (j=0; j<n; j+=r)

 //compute block of c with upper

 //left corner at(i,j)

 for (k=0; k<n; k+=r)

 //Cij += Aik*Bkj

}

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute mmult(a11, b12, p3, n/2)

compute a12b22…

compute a21b11…

compute a22b21…

compute a21b12…

compute a22b22…

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

blocked
divide-and-conquer

 O(n3/(B sqrt M)) O(n3/(B sqrt M))

Matrix multiplication: summary

void mmult(double*a, double*b, double*c, int n) {

int i, j, k;

for (i=0; i<n; i+=r)

 for (j=0; j<n; j+=r)

 //compute block of c with upper

 //left corner at(i,j)

 for (k=0; k<n; k+=r)

 //Cij += Aik*Bkj

}

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute mmult(a11, b12, p3, n/2)

compute a12b22…

compute a21b11…

compute a22b21…

compute a21b12…

compute a22b22…

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

blocked
divide-and-conquer

cache-aware cache-oblivious

 O(n3/(B sqrt M)) O(n3/(B sqrt M))

Aware or oblivious?
Notation:
• n: array size
• M: cache size
• B: block size

Cache-aware algorithms

• The algorithm needs to know M and B

Cache-oblivious algorithms

• We use M and B to analyze it, but
the algorithm does not need
knowledge of M and B

Aware or oblivious?
Notation:
• n: array size
• M: cache size
• B: block size

Cache-aware algorithms

• The algorithm needs to know M and B
• Parameters need to be tuned

Cache-oblivious algorithms

• We use M and B to analyze it, but
the algorithm does not need
knowledge of M and B

• They are efficient at all levels of the
memory hierarchy, simultaneously

• Elegant !

Project1

• Implement the three algorithms for matrix multiplication
• 1. standard
• 2. blocked
• 3. divide-and-conquer

• For each algorithm, plot running time function of problem size n
• For the blocked algorithm, pick a large n and plot running time function of

matrix block size r; chose the r that optimizes running time
• Compare the algorithms and discuss your findings

Will be in GitHub soon!

Resources

• Cache-oblivious algorithms were introduced by

Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran, "Cache-Oblivious
Algorithms", FOCS’99 (pdf)

• Here are some links that may be helpful
• Charles Leiserson, MIT, lecture on cache-efficient algorithms (part of course Performance

engineering of software systems). https://www.youtube.com/watch?v=T9LkSKK075M
• Erik Demaine, MIT, lecture on cache-oblivious median finding and matrix multiplication. It’s long

(1.5hr) but has all details in the analysis. https://www.youtube.com/watch?v=CSqbjfCCLrU
• cache-oblivious matrix multiply, part of Udacity course High-performance computing, 3min

video, great for getting the essential, but misses the subtleties of the analysis, like the necessity
of the tall-cache assumption. - (https://www.youtube.com/watch?v=vxkZkcbwU40

http://cacs.usc.edu/education/cs653/Frigo-CacheOblivious-FOCS99.pdf
https://www.youtube.com/watch?v=T9LkSKK075M
https://www.youtube.com/watch?v=CSqbjfCCLrU
https://www.youtube.com/watch?v=vxkZkcbwU40

Matrix layout

 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 59 51 52 53 54 55
56 57 58 59 60 61 62 63

row-major order

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

a

8

8

Matrix layout

 0 1 2 3 4 5 6 7
 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 59 51 52 53 54 55
56 57 58 59 60 61 62 63

row-major order

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

a

8

8

Show where the elements of a11 reside in this array

c = (double*) calloc(sizeof(double), n*n)

void mmult(double* a, double* b, double*c, int n) {

//base case

if (n==1)

c = a*b

return

 else

compute mmult(a11, b11, p1, n/2)

compute mmult(a12, b21, p2, n/2)

compute a11b12 …

compute a12b22

compute a21b11

compute a22b21

compute a21b12

compute a22b22

add p1+p2 and put it in c11

add p3+p4 and put it in c12

….

}

Matrix multiplication with blocked layout

8 recursive calls to multiply matrices of size n/2-by-n/2

a11, a12, … b11, b12, …have to be created
by copying from a and b

c11, c12, have to be copied into c

implement w/o copying??

