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Memory-efficient algorithms



(Standard) algorithm analysis

• Running time = number of instructions in the RAM model of computation

RAM model = abstract model of a machine 
• all arithmetic/logic/control instructions 
• every instruction takes 1 step  
• each memory access takes 1 step  
• memory is infinite (data always fits in memory)



Algorithms run on real machines

CPU L2 RAM disk…L1

larger, slower

memory hierarchy



http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/

The memory hierarchy

http://classconnection.s3.amazonaws.com/149/flashcards/3088149/png/memory_hierarchy1367201501848.png
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Figure 2.1 The levels in a typical memory hierarchy in a server computer shown on top (a) and in a personal mobile 
device (PMD) on the bottom (b). As we move farther away from the processor, the memory in the level below becomes slower 
and larger. Note that the time units change by a factor of 109—from picoseconds to milliseconds—and that the size units change 
by a factor of 1012—from bytes to terabytes. The PMD has a slower clock rate and smaller caches and main memory. A key 
difference is that servers and desktops use disk storage as the lowest level in the hierarchy while PMDs use Flash, which is built 
from EEPROM technology.  

Example

RAM is 50 times slower than L1



The memory hierarchy

• At all levels, data is organized and moved in blocks/pages 
• Each level acts as a “cache” for the next level (stores most recently used blocks) 
• When CPU needs to do  a memory access, it first checks if the block that 

contains that data is (already) in the cache 
• cache hit: the block that contains the data item is in cache; read it from cache  
• cache miss: the block that contains the data item is not in cache; read the 

block in cache (and, if necessary, evict a block to make space) 
• cache replacement policy: OPT, LRU, FIFO, ..

CPU L2 RAM diskL1
blocks blocks blocks blocks

L3
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Figure 2.2 Starting with 1980 performance as a baseline, the gap in performance, measured as the difference in the time 
between processor memory requests (for a single processor or core) and the latency of a DRAM access, is plotted over time. 
Note that the vertical axis must be on a logarithmic scale to record the size of the processor–DRAM performance gap. The memory 
baseline is 64 KB DRAM in 1980, with a 1.07 per year performance improvement in latency (see Figure 2.13 on page 99). The 
processor line assumes a 1.25 improvement per year until 1986, a 1.52 improvement until 2000, a 1.20 improvement between 2000 and 
2005, and no change in processor performance (on a per-core basis) between 2005 and 2010; see Figure 1.1 in Chapter 1.  

Why does it matter anyways?  Aren’t computers getting faster? 



Refined algorithm analysis

• CPU analysis 

• number of instructions  

• Memory access analysis 

• number of blocks transferred between levels of the memory hierarchy

CPU L2 RAM diskL1
blocks blocks blocks blocks

L3



Memory access analysis: The ideal-cache model 

Performance measure: number of cache misses 
Q(n) = Q(n, M, B)

• Consider only two levels of the memory 
hierarchy 

• Cache size M bytes 
• Cache block (line) size B bytes 
• Assume LRU or FIFO  block replacement 
• Fully associative cache (a block can go 

anywhere 
• Count only one direction (what goes in 

must come out)
memory

block
CPU

cache
M

B



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Analysis in the ideal-cache model
Example: Scanning



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

cache:

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

B=32 bytes = 8 ints

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…memory:



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

6 4 4 1 5 2 1 4

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

sum += a[i]

Example: Scanning

Notation:  
• n: array size 
• M: cache size 
• B: block size 

1 3 1 7 4 5 9 3 5 1 3 8 …

cache:

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

1 3 1 7 4 5 9 3

5 1 3 8 2 4 6 0

6 4 4 1 5 2 1 4
Total: O(n/B) cache misses 

memory:

B=32 bytes = 8 ints



//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access



1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:

memory:

B=32 bytes = 8 ints



1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:

memory:

B=32 bytes = 8 ints



6 4 4 1 5 2 1 4

1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:

memory:

B=32 bytes = 8 ints



1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:
6 4 4 1 5 2 1 4

memory:

B=32 bytes = 8 ints



1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:
6 4 4 1 5 2 1 4

memory:

B=32 bytes = 8 ints



1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:
6 4 4 1 5 2 1 4

1 3 1 7 4 5 9 3

memory:

B=32 bytes = 8 ints



1 3 1 7 4 5 9 3 5 1 3 8 2 4 6 0 6 4 4 1 7 5 2 1 4 8 9 5 7…

//array a was initialized with n elements  

sum =0  

for (i=0; i<n; i++) 

k = random() %n ;  

sum += a[k]

Example: Random access

Notation:  
• n: array size 
• M: cache size 
• B: block size 

cache:
6 4 4 1 5 2 1 4

1 3 1 7 4 5 9 3 Total: O(n) cache misses 

memory:

B=32 bytes = 8 ints



• Summary  
• Sequential access: O(n/B) cache misses 
• Random accesses: O(n) cache misses  

• Spatial locality  
• If a memory location is accessed,  it’s likely that a nearby memory location 

will be accessed in the near future 
• Temporal locality

• If a memory location is accessed, it’s likely that the same location will be 
accessed again in the  near future 

• Memory-efficient algorithms need to improve (spatial and/or temporal) locality

Memory-efficient algorithms 



Three algorithms:  
• standard  
• blocked/tiling  
• divide-and-conquer 

• Illustrate the analysis and design of memory-efficient algorithms 

Given two n-by-n matrices, compute their product

= xc a b

n

n

n

n

n

n

Matrix multiplication



Matrix multiplication: standard  

//we’ll use linearized arrays for efficiency  

c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

for (k=0; k<n; k++) 

//c[i][j] += a[i][k]*b[k][j] 

c[i*n+j] += a[i*n+k]*b[k*n+j] 

}



Matrix multiplication: standard  

//we’ll use linearized arrays for efficiency  

c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

for (k=0; k<n; k++) 

//c[i][j] += a[i][k]*b[k][j] 

c[i*n+j] += a[i*n+k]*b[k*n+j] 

}

CPU: O(n3) cache-misses:



Cache-miss analysis 
c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

for (k=0; k<n; k++) 

c[i*n+j] += a[i*n+k]*b[k*n+j] 

}

= xc a b

n

n

n

n

n

n

Assume B << n 

Notation:  
• n: array size 
• M: cache size 
• B: block size 



Cache-miss analysis 
c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

for (k=0; k<n; k++) 

c[i*n+j] += a[i*n+k]*b[k*n+j] 

}

= x

n

n

n

n

n

n

Assume B << n 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

bac



Cache-miss analysis 
c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

for (k=0; k<n; k++) 

c[i*n+j] += a[i*n+k]*b[k*n+j] 

}

= x

n

n

n

n

n

n

Assume B << n 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

bac

each element in c accesses  a row of a (n/B blocks) and a column of B (n blocks)



Cache-miss analysis 
c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i++) 

for (j=0; j<n; j++) 

for (k=0; k<n; k++) 

c[i*n+j] += a[i*n+k]*b[k*n+j] 

}

= x

n

n

n

n

n

n

Assume B << n 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

bac

cache-misses: O((n + n/B)n2) = O(n3) 

if n < M/B: b columns share same blocks ==>O( n3/B) 



Matrix multiplication:blocked  

= x

c a b

Do it block by block, instead of element by element.

r
r



Matrix multiplication:blocked  

= x

c a b

Partition the matrices in blocks of size r-by-r 

Denote Cij:  the r-by-r block with upper-left corner (i,j) 

Then Cij = Ai0B0j + …

r
r



Matrix multiplication:blocked  

c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i+=r) 

   for (j=0; j<n; j+=r) 

    //compute block of c with upper left corner at(i,j) 

    for (k=0; k<n; k+=r) 

      //Cij  += Aik*Bkj 

}

//<———————-  matrix multiplication



Matrix multiplication:blocked  

c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i+=r) 

   for (j=0; j<n; j+=r) 

    //compute block of c with upper left corner at(i,j) 

    for (k=0; k<n; k+=r) 

      //Computes Aik*Bkj 

      for (ii=i; ii<i+r; ii++) 

      for (jj=j; jj<j+r; jj++) 

       for (kk=k; kk<k+r; kk++) 

            c[ii*n+jj] += a[ii*n+kk]*b[kk*n+jj] 

}



Cache-miss analysis 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

= xc a b

n

n

n

n

n

n

r
r

For each block of c:  
read n/r blocks in a and n/r blocks in b 
  

In total there are (n/r)2 blocks in c 

We’ll chose the size of a block such that three blocks fit in 
cache: 3r2 = M, or r = Theta(sqrt M) 
How to chose r?  



Cache-miss analysis 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

= xc a b

n

n

n

n

n

n

r
r

For each block of c:  
read n/r blocks in a and n/r blocks in b 
  

In total there are (n/r)2 blocks in c 

We’ll chose the size of a block such that three blocks fit in 
cache: 3r2 = M, or r = Theta(sqrt M) 



r

r

B

How many cache misses to read a block of size r-by-r, in a matrix laid out in row-major order? 

n

n



n

n

c

r

r

How many cache misses to read a block of size r-by-r, in a matrix laid out in row-major order? 

n

n
B

How many blocks span a sub-matrix of size r-by-r, in a matrix laid out in row-major order? 



r

r

How many cache misses to read a block of size r-by-r, in a matrix laid out in row-major order? 

n

n

cache-misses: O(r2/B + r) 

==> Reading a block of size M takes O(M/B + sqrt M) 

Note that O(M/B + sqrt M) is O(M/B) when M>B2

this term is annoying but it’s there

tall cache assumption

n

n

c



A cache is called tall if M>B2. 

Reading a block of size M in a matrix laid out in row-major 
order takes O(M/B)cache misses with the tall cache assumption.  

If the cache is not tall, it takes O(sqrt M) cache misses.  

n

n

c



Cache-miss analysis 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

= xc a b

n

n

n

n

n

n

r
r

Assume the size of a matrix block is chosen such that  
three blocks fit in cache: 3r2 < M, or r = sqrt M 

For each block of c:  
read n/r blocks in a and n/r blocks in b 

In total there are (n/r)2 blocks in c 

A block has size O(M) and reading it takes O(M/B) misses with 
the tall cache assumption. 

TOTAL: (n/r)2 2n/r r2/B  



Cache-miss analysis 

Notation:  
• n: array size 
• M: cache size 
• B: block size 

= xc a b

n

n

n

n

n

n

r
r

TOTAL: O(n3/(B sqrt M)) 

The point is, it’s much better (although messy to analyze)



Summary 
Notation:  
• n: array size 
• M: cache size 
• B: block size 

Example: 

cache block B = 32 bytes = 4 doubles

cache size M = 768 elements ==> b = 16 elements


standard: O(n3)

blocked: O(n3/64) <———————— 64 times fewer cache misses


standard: O(n3) 
blocked:  O(n3/(B sqrt M))



Can we do better? 

standard: O(n3) 
blocked:  O(n3/(B sqrt M))



Matrix multiplication: divide & conquer 



Matrix multiplication: divide & conquer 

= x

c a b

Assume n is a power of 2. 



Matrix multiplication: divide & conquer 

= x

c a b

Assume n is a power of 2. 



Matrix multiplication: divide & conquer 

Assume n is a power of 2. 

= x

c a b

11 12

21 22

11 12

21 22

11 12

21 22



c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute a11b12 … 

compute a12b22 

compute a21b11 

compute a22b21 

compute a21b12 

compute a22b22 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

Matrix multiplication: divide & conquer 

8 recursive calls to multiply matrices of size n/2-by-n/2

a11, a12, … b11, b12, …can be created  
by copying from  a and b

implement w/o copying?

can these sums be avoided? 



c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute a11b12 … 

compute a12b22 

compute a21b11 

compute a22b21 

compute a21b12 

compute a22b22 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

Matrix multiplication: divide & conquer 

8 recursive calls to multiply matrices of size n/2-by-n/2

CPU analysis 



c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute a11b12 … 

compute a12b22 

compute a21b11 

compute a22b21 

compute a21b12 

compute a22b22 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

Matrix multiplication: divide & conquer 

8 recursive calls to multiply matrices of size n/2-by-n/2

CPU analysis 
• T(n) = 2 if n=1 

• T(n) = 8T(n/2) + n2 otherwise  

solves to O(n3)



c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute a11b12 … 

compute a12b22… 

compute a21b11… 

compute a22b21… 

compute a21b12… 

compute a22b22… 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

Matrix multiplication: divide & conquer 

8 recursive calls to multiply matrices of size n/2-by-n/2

Cache miss analysis 
• C(n) = 8C(n/2) + O(n2/B) 
• C(n) = ?? basecase 

Notation:  
• n: array size 
• M: cache size 
• B: block size 



Matrix multiplication: divide & conquer 

Cache miss analysis: 
• C(n) = 8C(n/2) + O(n2/B) 
• C(n) = ?? for  basecase 

What is a good base-case to analyze cache misses? 

The recursive algorithm proceeds until matrix size =1.  
Let n’ be the size at which  a, b, c all fit in cache, ie 3 n’2 = M 

From that point on, the algorithm keeps dividing and recursing. No matter in what 
order the elements of the matrices are brought in  cache, once all blocks have been 
loaded, they stay in cache, since they fit in cache.   
Reading a matrix of size O(M) takes O(M/B) with the tall cache assumption .    

==> Basecase: C(sqrt M) = O(M/B)   

This solves to O(n3/(B sqrt M)). 

Notation:  
• n: array size 
• M: cache size 
• B: block size 



Matrix layout  

• a11, a12, … b11, b12, …are not contiguous in a. Reading a matrix of size r-by-r takes O(r2/B + r) misses, 
which is O(r2/B) with the tall cache assumption. However the O(r) term will add to the constant factors.  

• Can this be avoided? 

= x

c a b

11 12

21 22

11 12

21 22

11 12

21 22



Matrix layout  

• a11, a12, … b11, b12, …are not contiguous in a. Reading a matrix of size r-by-r takes O(r2/B + r) misses, 
which is O(r2/B) with the tall cache assumption. However the O(r) term will add to the constant factors.  

• Can this be avoided? 

= x

c a b

11 12

21 22

11 12

21 22

11 12

21 22

Yes, with a different matrix layout! 
More on this next time



standard:             O(n3) 
blocked:              O(n3/(B sqrt M)) 
divide-and-conquer:   O(n3/(B sqrt M))

Matrix multiplication: summary

Cache miss analysis: 

Notation:  
• n: array size 
• M: cache size 
• B: block size 



Matrix multiplication: summary

void mmult(double*a, double*b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i+=r) 

   for (j=0; j<n; j+=r) 

    //compute block of c with upper  

    //left corner at(i,j) 

    for (k=0; k<n; k+=r) 

         //Cij  += Aik*Bkj 

} 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute mmult(a11, b12, p3, n/2) 

compute a12b22… 

compute a21b11… 

compute a22b21… 

compute a21b12… 

compute a22b22… 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

blocked
divide-and-conquer

 O(n3/(B sqrt M))  O(n3/(B sqrt M))



Matrix multiplication: summary

void mmult(double*a, double*b, double*c, int n) { 

int i, j, k;  

for (i=0; i<n; i+=r) 

   for (j=0; j<n; j+=r) 

    //compute block of c with upper  

    //left corner at(i,j) 

    for (k=0; k<n; k+=r) 

         //Cij  += Aik*Bkj 

} 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute mmult(a11, b12, p3, n/2) 

compute a12b22… 

compute a21b11… 

compute a22b21… 

compute a21b12… 

compute a22b22… 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

blocked
divide-and-conquer

cache-aware cache-oblivious

 O(n3/(B sqrt M))  O(n3/(B sqrt M))



Aware or oblivious? 
Notation:  
• n: array size 
• M: cache size 
• B: block size 

Cache-aware algorithms

• The algorithm needs to know M and B

Cache-oblivious algorithms

• We use M and B to analyze it, but 
the algorithm does not need 
knowledge of M and B



Aware or oblivious? 
Notation:  
• n: array size 
• M: cache size 
• B: block size 

Cache-aware algorithms

• The algorithm needs to know M and B 
• Parameters need to be tuned

Cache-oblivious algorithms

• We use M and B to analyze it, but 
the algorithm does not need 
knowledge of M and B

• They are efficient at all levels of the 
memory hierarchy, simultaneously 

• Elegant !



Project1

• Implement the three algorithms for matrix multiplication  
• 1. standard  
• 2. blocked 
• 3. divide-and-conquer  

• For each algorithm, plot running time function of problem size n 
• For the blocked algorithm, pick a large n and plot running time function of 

matrix block size r; chose the r that optimizes running time  
• Compare the algorithms and  discuss your findings  

Will be in GitHub soon!



Resources

• Cache-oblivious algorithms were introduced by   

Matteo Frigo, Charles E. Leiserson, Harald Prokop, Sridhar Ramachandran, "Cache-Oblivious 
Algorithms",  FOCS’99 (pdf) 

• Here are some links that may be helpful  
• Charles Leiserson, MIT, lecture on cache-efficient algorithms (part of course Performance 

engineering of software systems).   https://www.youtube.com/watch?v=T9LkSKK075M 
• Erik Demaine, MIT, lecture on cache-oblivious median finding and matrix multiplication. It’s long 

(1.5hr) but has all details in the analysis.   https://www.youtube.com/watch?v=CSqbjfCCLrU 
• cache-oblivious  matrix multiply, part of Udacity course High-performance computing, 3min 

video, great for getting the essential, but misses the subtleties of the analysis, like the necessity 
of the tall-cache assumption. - (https://www.youtube.com/watch?v=vxkZkcbwU40

http://cacs.usc.edu/education/cs653/Frigo-CacheOblivious-FOCS99.pdf
https://www.youtube.com/watch?v=T9LkSKK075M
https://www.youtube.com/watch?v=CSqbjfCCLrU
https://www.youtube.com/watch?v=vxkZkcbwU40




Matrix layout  

 0   1   2    3   4   5   6  7 
 8   9  10 11 12 13 14 15 
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 59 51 52 53 54 55
56 57 58 59 60 61 62 63

row-major order

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

a

8

8



Matrix layout  

 0   1   2    3   4   5   6  7 
 8   9  10 11 12 13 14 15 
16 17 18 19 20 21 22 23
24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47
48 49 59 51 52 53 54 55
56 57 58 59 60 61 62 63

row-major order

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 

a

8

8

Show where the elements of a11 reside in this array



c = (double*) calloc(sizeof(double), n*n) 

void mmult(double* a, double* b, double*c, int n) { 

//base case 

if (n==1)  

c = a*b 

return 

  else 

compute mmult(a11, b11, p1, n/2) 

compute mmult(a12, b21, p2, n/2) 

compute a11b12 … 

compute a12b22 

compute a21b11 

compute a22b21 

compute a21b12 

compute a22b22 

add p1+p2 and put it in c11 

add p3+p4 and put it in c12 

…. 

}

Matrix multiplication with blocked layout  

8 recursive calls to multiply matrices of size n/2-by-n/2

a11, a12, … b11, b12, …have to be created  
by copying from  a and b

c11, c12, have to be copied into c

implement w/o copying??


