
Laura Toma

Bowdoin College

Algorithms for GIS
csci3225

Flow on digital terrain models
(I)

• Where does the water go when it rains?

• Flooding: What are the areas susceptible to flooding?

• Sea level rise: What will go under water when sea level rises by e.g. 10 ft?

• River network: Model and “compute” rivers on a terrain?

• Catchments: What area drains to a point?

• Watersheds and watershed hierarchy: What are the sub-basins of the Amazon?

• Many other processes can be modeled with flow

• E.g.: Suppose a pollutant is spilled on a terrain: what area will be
contaminated (when it rains)) ?

Flow

Flow on digital terrain models
grid TIN

Outline:
• Flow direction
• Flow accumulation
• Flat areas
• Catchments
• Watersheds and watershed hierarchy
• Sea-level rise

images from H. Haverkort

Flow on grid terrains

Modeled by two basic functions
• Flow direction (FD): the direction water flows at a point
• Flow accumulation (FA): total amount of water flowing through a point

elevation grid FD grid FA grid

Flow on grid terrains

Modeled by two basic functions
• Flow direction (FD): the direction water flows at a point
• Flow accumulation (FA): total amount of water flowing through a point

elev grid FD grid FA grid

Flow direction (FD)

• FD(p) = the direction water flows at p

• Generally, FD is direction of gradient at p (direction of greatest decrease)

• FD can be approximated based on the neighborhood of p

• FD on grids:

• discretized to eight directions (8 neighbors), multiple of 45o

SFD: Single flow direction

(steepest downslope)

MFD: Multiple flow directions

(all downslope neighbors)

//return the flow direction of cell (r,c)

int flowdir(int r, int c) {

…

}

Flat areas and pits ?? later

//compute FD grid

for r = 0 to nrows

for c = 0 to ncols

FD[r][c] = flowdire(r,c)

O(n) time

Flow direction as a graph

• FD graph cannot have cycles (water goes downhill)
• For single flow direction (SFD): FD is a set of directed trees
• Each tree represents a separate “river tree”

Flow accumulation (FA)

• Assume each cell starts with 1 unit of water

• Assume each cell sends its initial as well as incoming water to the neighbor
pointed to by its FD

• A(p) = how much water goes through cell p

9

FD grid FA grid

Flow accumulation (FA)

• Assume each cell starts with 1 unit of water

• Assume each cell sends its initial as well as incoming water to the neighbor
pointed to by its FD

• A(p) = how much water goes through cell p

9

FD grid FA grid

Show the rest of the FA grid

• Points with small FA= ridges
• Points with high FA = channels (rivers)
• FA models rivers

• set an arbitrary threshold t
• cell c is on a river if FA(c) >= t

Flow accumulation (FA)

Flow accumulation (FA)

FA grid draped over elevation grid
FA 2D view

• high values: blue
• medium values: light blue
• low values: yellow

Computing FA grid

Given an elevation grid, and a FD grid, compute the FA grid

elevation grid

FD grid

FA grid

FD grid can be given explicitly or implicitly, via a function:

//return the flow direction of cell (r,c)
int flowdir(int r, int c)

1

248

16

32 64 128

Computing FA grid

• Idea 1:
• Scan row-by-row: for each cell, add +1 to all cells on its downstream

path

• Idea 2:
• Flow at cell c is the sum of the flows of the neighbors that flow into c
• Use recursion
• Do this for every cell

• Or..?

Given an elevation grid, and a FD grid, compute the FA grid

Not straightforward to analyze

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

worst-case
running time

Theta(n2)

n = nb. of
cells in the grid

thanks!!! to H. Haverkort

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,j);

Computing FA: naive algorithm (2)

//return the flow of cell (i,j)
int compute_flow(i,j) {
 assert(inside_grid(i,j));
 int f = 1; //initial flow at (i,j)
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 f += compute_flow(i+k, j+l);
 }//for k
 }//for l
 return f;
}

//return 1 if cell (a,b)’s FD points to cell (x,y)
// that is, if (a,b)’s FD points towards (x,y)
int flows_into(a,b, x,y) {
 if (!inside_grid(a,b)) return 0;
 …
}

• Is this linear ??
• Worst case running time?
• What sort of FD graph would

trigger worst-case?

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,j);

Computing FA: naive algorithm (2)

//return the flow of cell (i,j)
int compute_flow(i,j) {
 assert(inside_grid(i,j));
 int f = 0; //initial flow at (i,j)
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 f += compute_flow(i+k, j+l);
 }//for k
 }//for l
 return f;
}

//return 1 if cell (a,b)’s FD points to cell (x,y)
// that is, if (a,b)’s FD points towards (x,y)
int flows_into(a,b, x,y) {
 if (!inside_grid(a,b)) return 0;
 …
}

worst-case
running time

Theta(n2)

Flow accumulation: faster?

• Fast algorithm 1: naive algorithm + dynamic programming:
• Use recursion, but once a value flow(i,j) is computed, store it in a table.

This avoids re-computation.

n = nb. of cells in the grid
Flow accumulation: faster

• Fast algorithm 1: naive algorithm + dynamic programming:
• Use recursion, but once a value flow(i,j) is computed, store it in a table.

This avoids re-computation.

n = nb. of cells in the grid
Flow accumulation: faster

//return the flow of cell (i,j)
int compute_flow(i,j) {
 assert(inside_grid(i,j));

if flow[i][j] != -1: return flow[i][j]
int f = 1; //initial flow at (i,j)

 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 f += compute_flow(i+k, j+l);
 }//for k
 }//for l
 flow[i][j] = f
 return f;
}

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,j);

Analysis?

• Fast algorithm 2: Naive algorithm + avoid recursion

n = nb. of cells in the grid
Flow accumulation: faster

p

p’

if p’s FD points to p’, then compute FA of p before p’

• Fast algorithm 2: Naive algorithm + avoid recursion

n = nb. of cells in the grid
Flow accumulation: faster

Instead of row-major order, traverse points in topological order!

p

p’

if p’s FD points to p’, then compute FA of p before p’

• Fast algorithm 2: Naive algorithm + avoid recursion

n = nb. of cells in the grid
Flow accumulation: faster

//return the flow of cell (i,j)
void compute_flow(i,j) {
 assert(inside_grid(i,j));
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 flow[i][j] += flow[i+k][j+l];
 }//for k
 }//for l
}

Initialize all cels to flow[i][j] = 1

For each cell (i,j) in topological order:

compute_flow(i,j)

Analysis?

Compute a topological order, and number the cells in this order

Then traverse the cells in this order, and update their flow

• Fast algorithm 3: call copute_flow(i,j) only from points (i,j) that are outs of
rivers (either flow off the grid, or are in pits and have no FD)

n = nb. of cells in the grid
Flow accumulation: faster

//return the flow of cell (i,j)
void compute_flow(i,j) {
 assert(inside_grid(i,j));
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 flow[i][j] += flow[i+k][j+l];
 }//for k
 }//for l
}

Analysis?

