Algorithms for GIS
CSCI3225

Laura Toma

Bowdoin College

Flow on digital terrain models
|

Flow

 Where does the water go when it rains?
 Flooding: What are the areas susceptible to flooding?
 Sea level rise: What will go under water when sea level rises by e.g. 10 ft7
* River network: Model and “compute” rivers on a terrain®
« Catchments: \What area drains to a point?
Watersheds and watershed hierarchy: \What are the sub-basins of the Amazon?
 Many other processes can be modeled with flow

 E.Q.: Suppose a pollutant is spilled on a terrain: what area will be
contaminated (when it rains)) ?

Flow on digital terrain models

Outline:

e Flow direction

e Flow accumulation

e [lat areas

 (Catchments
 Watersheds and watershed hierarchy

e Sea-level rise

images from H. Haverkort

Flow on grid terrains

Modeled by two basic functions
 Flow direction (FD): the direction water tlows at a point

 Flow accumulation (FA): total amount of water flowing through a point

elevation gria FD grid FA grid

Flow on grid terrains

Modeled by two basic functions
 Flow direction (FD): the direction water tlows at a point

 Flow accumulation (FA): total amount of water flowing through a point

elev grid FA grid

Flow direction (FD)

 FD(p) = the direction water flows at p

 Generally, FD is direction of gradient at p (direction of greatest decrease)
 FD can be approximated based on the neighborhood of p

e FD on grids:

« discretized to eight directions (8 neighbors), multiple of 450

3 2 4 3\ E {4
7 i 8 7 */ 8
71 11|9 7|19
SFD: Single flow direction MFD: Multiple flow directions

(steepest downslope) (all downslope neighbors)

DEEENE

Elevation surface Flow direction

32 J128

Direction coding

The coding of the direction of flow

int flowdir(int r, int c) {

Flat areas and pits ?7 later

DEEENE

Elevation surface Flow direction

32 J128

Direction coding

The coding of the direction of flow

for r = 0 to nrows

< O(n) time
for ¢ = 0 to ncols

FD[r][c] = flowdire(r,c)

Flow direction as a graph

 FD graph cannot have cycles (water goes downhill)
 For single flow direction (SFD): FD is a set of directed trees

 Each tree represents a separate “river tree”

N
NNt

—

1

R

T (NT
“—
——T— 1

Flow accumulation (FA)

e Assume each cell starts with 1 unit of water

« Assume each cell sends its initial as well as incoming water to the neighbor
pointed to by its FD

 A(p) = how much water goes through cell p

FD grid FA grid

Flow accumulation (FA)

e Assume each cell starts with 1 unit of water

« Assume each cell sends its initial as well as incoming water to the neighbor
pointed to by its FD

 A(p) = how much water goes through cell p

Show the rest of the FA grid

of
7

I
87
I
o« e
(@

FD grid FA grid

Flow accumulation (FA)

Points with small FA= ridges
Points with high FA = channels (rivers)
FA models rivers

e setan arbitrary threshold t

e cellcisonariverif FA(c) >=t

e

“
LN

Flow accumulation (FA)

.- ﬁ '\. Y ,{‘Q::{.‘Pi' ““:A " 1 : ’,‘-" &\ A%
R {_,@ G A N

FA grid draped over elevation grid

FA 2D view
* high values: blue
 medium values: light blue
* |ow values: yellow

Computing FA grid

Given an elevation grid, and a FD grid, compute the FA grid

elevation grid

FD grid

FA grid

FD grid can be given explicitly or implicitly, via a function:

int flowdir(int r,

int C)

32

64

128

16

Computing FA grid

Given an elevation grid, and a FD grid, compute the FA grid

e |dea 1:

e Scan row-by-row: for each cell, add +1 to all cells on its downstream
path

e |dea2:
 Flow at cell cis the sum of the flows of the neighbors that flow into ¢
 Use recursion

Do this for every cell

Not straightforward to analyze

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

/‘

- - @ -

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

- -

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 1 2
T i
1 1 1 2
| A
v |
2 2
i
o 2 2
| A
v |
. 2
i
2
| A
7 |

thanks!!!l to H. Haverkort

Computing FA:

naive algorithm (1)

1 1 1 1 1 y)
A i
1 1 1 2
| A
v |
2 2
i
- 2 =D
| i
v |
—= 2 2
i
2
| A
v |

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1

1

1

//

2

N

2
!
11| 1 2
Ry T
2 2
N A
—> 2 —> 2
: K
> 2 2
K
2
' T

A
|

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 1 2 3
A
1 1 1 y)
| A
v |
2 2
i
- 2 2
| A
v |
> 2 2
i

—f N

<1

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 1 2 3
R
1 1 1 2
| A
v |
2 2
r
> 2 > 2
| A
\ |
—> 2 2
1
2
| A
\ |

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1

1 1

DR

2

1

1

1 1

-

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1

1

1

1

N A

2

1

1

-

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1 1

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 | 3 | 6
B D e i
2 2 2 5
| A
v |
5 5
i
e 5 > 5
A
\ J
> 5 5
]
5
i]

thanks!!!l to H. Haverkort

Computing FA:

naive algorithm (1)

n = nb. of
cells in the grid

1 1 1 1 3 6
A
1 2 2 2 5
| A
v |
5 5
i
- 5 —» 5
| 2
v |
—» 5 5
i
5
| A
v |

worst-case
running time
Theta(n?)

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (2)

for (i=0; i<nrows; i++)
for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,));

/[return 1 if cell (a,b)’s FD points to cell (x,y)
/[that is, if (a,b)’'s FD points towards (x,y)
int flows_into(a,b, x,y) {

if (linside_grid(a,b)) return 0;

e Isthislinear ?7?
« Worst case running time?

 What sort of FD graph would
trigger worst-case”

/[return the flow of cell (i,j)
int compute_flow(i,j) {
assert(inside_grid(i,j));
intf=1; //initial flow at (i,))
for (k=-1; k<= 1; k++) {
for (I=-1; <= 1; |++) {
if flows_into(i+k, |+, i,))

f += compute_flow(i+k, j+l);

}/[for k

}//for |
return f;

Computing FA: naive algorithm (2)

for (i=0; i<nrows; i++)
for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,));

/[return 1 if cell (a,b)’s FD points to cell (x,y) /[return the flow of cell (i,j)

/[that is, if (a,b)’s FD points towards (X,y) int compute_flow(i,j) {

int flows_into(a,b, x,y) { assert(inside_grid(i,j));
if (linside_grid(a,b)) return 0; intf=0; //initial flow at (i,)
for (k=-1; k<= 1; k++) {

\ for (I=-1; I<=1; [++) {

if flows_into(i+k, |+, i,))

f += compute_flow(i+k, j+l);

worst-case }/for k
running time H/for |
Theta(n?) return f;

Flow accumulation: faster?

Flow accumulation: faster

n = nb. of cells in the grid

Fast algorithm 1: naive algorithm + dynamic programming:

Use recursion, but once a value flow(i,j) is computed, store it in a table.

This avoids re-computation.

Flow accumulation: faster

n = nb. of cells in the grid

e Fast algorithm 1: naive algorithm + dynamic programming:

« Use recursion, but once a value flow(i,j) is computed, store it in a table.

This avoids re-computation.

for (i=0; i<nrows; i++)
for (j=0; j<ncols; j++)

flow[i][]] =compute_flow(i,));

Analysis?

/[return the flow of cell (i,j)
int compute_flow(i,j) {
assert(inside_grid(i,j)):
if flow[i][j] '=-1: return flow[i][]]
intf=1; //initial flow at (i,j)
for (k=-1; k<= 1; k++) {
for (I=-1; I<=1; 1++) {
if flows_into(i+k, j+I, 1,j)
f += compute_flow(i+k, j+l);
}//[for Kk
}/[for |
flow[i][j] = f
return f;

Flow accumulation: faster

Fast algorithm 2: Naive algorithm + avoid recursion

n = nb. of cells in the grid

p\ If p’s FD points to p’, then compute FA of p before p’

P

n = nb. of cells in the grid

Flow accumulation: faster

e [ast algorithm 2: Naive algorithm + avoid recursion

p\ If p’s FD points to p’, then compute FA of p before p’

P

Instead of row-major order, traverse points in topological order!

Flow accumulation: faster

n = nb. of cells in the grid

e [ast algorithm 2: Naive algorithm + avoid recursion

Initialize all cels to flow[i][j] = 1

For each cell (i,j) in topological order:

compute_flow(i,))

Analysis?

/[return the flow of cell (i,))
void compute_flow(i,j) {
assert(inside_grid(i,j)):
for (k=-1; k<= 1; k++) |
for (I=-1; I<= 1; 1++) {
If flows_into(i+k, j+I, i,j)
flow[i][j] += flow[i+k][j+I];
}/for Kk
}//[for |

e

R
| AR

|
L]

Compute a topological order, and number the cells in this order

LN

Then traverse the cells in this order, and update their flow

Flow accumulation: faster

n = nb. of cells in the grid

Fast algorithm 3: call copute_flow(i,j) only from points (i,j) that are outs of
rivers (either flow off the grid, or are in pits and have no FD)

Analysis?

/[return the flow of cell (i)
void compute_flow(i,]) {
assert(inside_grid(i,j));
for (k=-1; k<= 1; k++) {
for (I=-1; I<= 1; 1++) {
If flows_into(i+Kk, j+I, 1,j)

flowl[i][j] += flow[i+k][j+];

V/for k
}/[for |

