Algorithms for GIS csci3225

Laura Toma

Bowdoin College

Spatial data types and models

Spatial data in GIS

satellite imagery

networks

planar maps

surfaces

point cloud (LiDAR)

Spatial data in GIS

How to represent it?

Vector model

- Data is represented using points, lines and polygons
- Useful for data that has discrete boundaries, such as streets, maps, rivers

Raster model

- Data is represented as a surface modeled by a matrix of values (pixels)
- Useful for "continuous" data (ie data that varies continuously) such as satellite imagery, aerial photographs, surface functions such as elevation, pollution, population

Real World

Both models can be used for all data

http://gsp.humboldt.edu/olm/Lessons/GIS/08\ Rasters/Images/convertingdatamodels2.png

Both models can be used for all data

http://www.newdesignfile.com/postpic/2013/04/vector-vs-raster-data_132177.jpg

World is often modeled as a collection of vector and raster layers
streets, parcels, boundaries usually as vector
elevation, land usage usually as raster

Spatial data in GIS

satellite imagery

planar maps

VECTOR
point cloud (LiDAR)

VECTOR

Data structures for networks

Data structures for networks?

- How about this:
- list of points, each point stores its coordinates
- list of segments, each segment stores pointers to its vertices

- What if you wanted to traverse a path starting at point 0?
- search through the segment list looking for a segment that starts from a; you find $(0,1)$
- search through the segment list looking for another segment from 1; you find (1,2)

Data structures for networks?

- How about this:
- list of points, each point stores its coordinates
- list of segments, each segment stores pointers to its vertices

Spaghetti data structure (like spaghetti, no structure, messy, inefficient eating)

Data structures for networks

- Need a topological data structure that allows to traverse paths efficiently
- Wait, a network is a graph!
- Use adjacency list

- In practice, this adjacency list needs to be built
- From raw data

Exercise

```
Assume you download US road data. It comes as a file that has the
following format
    - first the number of vertices and the number of edges
    - then all the vertices and their geometric coordinates
    - then all edges, where an edge is given through the indices of its
        vertices.
Sketch how you would build an adjacency list from it.
Analyze function of |V| vertices and |E| edges.
```

```
4
3
(1.1, 2.3)
(3.4, 2.1)
(2.6, 1.8)
(1.4,8.2)
(0,1)
(1,2)
(2,3)
```


Spatial data in GIS

point cloud (LiDAR)

Data structures for surfaces

Surfaces can have different topologies

Surfaces in GIS

- GIS deals with the surface of the Earth (or Mars, or...)
- The Earth is round, and its surface has the topology of a 2D sphere

Terrains

- A terrain is a function of two variables, $z(x, y)$. Meaning that, for a given (x, y), there is a unique $z(x, y)$
- Put differently, a terrain is a surface in 3D such that any vertical line intersects it in at most one point (xy-monotone)

Terrains

Not terrains

Terrains

- Most often terrains represent elevation, but they can also represent other Earth surface functions like rainfall, population, solar radiation, ...

Global Annual Average PM_{25} Grids from MODIS and MISR Aerosol Optical Depth (AOD), 2010: North America
Satellite-Derived Ervironmental Indicators

 (AOD) data sc:s provide annua 'snef snots' sf particulste ma'tor 2.5 in latitalers ir smaler in diameter Fom 200-2010. Exiusu et to fi"e partides is as $50 c$ ated with premature dath as well as increased morbilly fom respiratory ant cartiovascular disease, espec ally in the e derly, ycung
 de rived from Mcderate Resolution Imaza no Spectrorad ometer (MODIS) anc PA lioangle Imagiog GpertroRsdiometer (VISR) \&e-osol Opt cal Desth (AOD) da:a. The rastecerid call size is approximstels 50 sq . km at the equator, and the wxilut is from $70^{\circ} \mathrm{N}$ tu $60^{\circ} S$ latitude
 Canct Lex Jusenz.en a Evint

旬 2013 The Thusters of C-:kith a IJriversity in the Cily of New York

Modeling terrains: Digital terrain models

- In practice, terrain data comes as a set of sample points $\{(x, y)\}$ and their sampled z-values
- A digital terrain model = sample points + interpolation method + data structure

With DTM we can do terrain modeling

Digital terrain models

	Rasters	

images from Herman Haverkort

Terrain as a raster (grid)

A raster terrain is a matrix of (elevation) values

- Samples
- uniform grid
- Data structure
- matrix
- Interpolation method
- nearest neighbor, linear, bilinear, splines, krigging, IDW, etc

Grids with nearest neighbor interpolation

Grids with nearest neighbor interpolation

Grids with nearest neighbor interpolation

Linear interpolation

Linear interpolation

Terrain: mesh of triangles on grid points

Raster with nearest neighbor vs linear interpolation

http://c1.zdb.io/files/2009/03/10/9/9700e9183d96ccb416b81b053887fef0.gif

Grids in practice

- Grid elevation data can be obtained from aerial imagery
- image = raster
- SAR interferometry: by combining Synthetic Aperture Radar (SAR) images of the same area it is possible to go from color to elevation maps
- Massive amounts of aerial imagery available
- Grid elevation data from LiDAR point clouds

point cloud (LiDAR)

Grids in practice

- Elevation data sources
- GTOPO dataset
- whole Earth at 1 km resolution
- http: ???
- SRTM 90m elevation data for entire world
- http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
- can download tiles anywhere in the world
- SRTM 30m data available for the entire USA (50+GB)
- Recently, elevation from LiDAR point clouds
- below 2 m resolution
- Huge!
- Grids available in a variety of formats

Grid arc-ascii format

Exercise

Consider an area of 300 km -by-300km to be represented as a raster (grid) at:
A. 100m resolution
B. 10 m resolution
C. 1 m resolution

How big (how many points) is the grid in each case?

Answer:

Terrain as a TIN (triangulated irregular network)

- Samples
- points arbitrarily distributed, variable resolution
- Interpolation method
- linear
- Data structure
- need a topological structure for triangular meshes

Why TINs?

uniform resolution $=$ waste on flat areas

variable resolution ==> fewer points

The differences bewtween a DEM and a TIN data set

http://www.staff.city.ac.uk/~jwo/landserf/landserf230/doc/userguide/images/figure3.12.jpg

Topological data structures for TINs

The 2D projection of a triangulated terrain is a triangulation.
\downarrow
A TIN is equivalent to a planar triangulation, except points have heights

Topological data structures for TINs

The 2D projection of a triangulated terrain is a triangulation.
What do we expect to do on a TIN?

- walk along an edge/triangle path
- given an edge, find the two faces that are adjacent to this edge

A good data structure for TINs \longleftarrow should do all these fast

- walk along the boundary of a face (triangle)
- find all edges and all triangles incident to a point

Topological data structures for TINs

Edge-based

- arrays of vertices, edges and triangles

Triangle-based

- arrays of vertices and triangles (edges are not stored explicitly)
- every vertex stores:
- its coordinates
- every edge stores:
- 2 references to its adjacent

geometry every vertex stores:
 - its coordinates

- every triangles stores:
- 3 references to its incident vertices
vertices

topology

- 2 references to its adjacent triangles
- every triangle stores:
- 3 references to its 3 edge
- 3 references to its adjacent triangles
- Note: CGAL uses triangle-based
- These are simplified versions of more general structures for arbitrary meshes which we might study later (the half-edge and quad-edge data structures)

Data structures for TINs

$\begin{array}{ll} & \text { vertex } \\ \text { edge } \\ \text { triangle }\end{array}$

edge-based

triangle-based

Data structures for TINs

$\begin{array}{ll} & \text { vertex } \\ \text { edge } \\ \text { triangle }\end{array}$

edge-based

triangle-based

Analysis? Is one better than other?

- Storing topology:
equivalent
- Memory:??

Data structures for TINs

```
How much memory does a topological structure for a TIN need?
    A. edge-based
    B. triangle-based
Denote
    n = number of points in the TIN
    e = number of edges
    f = number of triangles (faces)
```

There is a formula that connects e, f and n.

Detour through planar graphs and Euler characteristic

Let P be a set of points in the plane.
A triangulation is a partition of the plane into regions such that all regions are triangles.

one possible triangulation of P

planar graph

\downarrow

A triangulation is a graph: $V=$ the points, $E=$ the edges

Planar graphs

A graph is called planar if it can be drawn in the plane such that no two edges intersect except at their endpoints.

Such a drawing is called a planar embedding of the graph.

Example: $\mathrm{V}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}, \mathrm{E}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{a}, \mathrm{d}),(\mathrm{b}, \mathrm{c}),(\mathrm{c}, \mathrm{d}),(\mathrm{d}, \mathrm{a})\}$

Drawing the graph in the plane is called embedding.
Let's come up with different embeddings of the graph.

Planar graphs

A graph is called planar if it can be drawn in the plane such that no two edges intersect except at their endpoints.

Such a drawing is called a planar embedding of the graph.

Two drawings of the same graph.
Since there exists a planar embedding, the graph is planar.

Planar graphs

A graph is called planar if it can be drawn in the plane such that no two edges intersect except at their endpoints.

Such a drawing is called a planar embedding of the graph.

Note: Edges can be represented as simple curves in the drawing

http://people.hofstra.edu/geotrans/eng/methods/img/planarnonplanar.png

Planar graphs

A planar graph introduces a subdivision of the plane into regions called faces, which are polygons bounded by the graph's edges.

planar graph

triangulation

All faces (except the "outside" face) are triangles

Euler formula

[Euler] The following relation exists between the number of edges, vertices and faces in a connected planar graph: $v-e+f=2$.

The 7 bridges of Konisberg problem
Euler, November 14, 1750

WikipediA

The Free Encyclopedia

$$
V-E+F=2
$$

This equation is known as Euler's polyhedron formula. ${ }^{[1]}$ It corresponds to the Euler characteristic of the sphere (i.e. $\mathrm{X}=2$), and applies identically to spherical polyhedra. An illustration of the formula on some polyhedra is given below.

Name	Image	Vertices \boldsymbol{V}	Edges \boldsymbol{E}	Faces \boldsymbol{F}	Euler characteristic: $\boldsymbol{V}-\boldsymbol{E}+\boldsymbol{F}$
Tetrahedron		4	6	4	$\mathbf{2}$
Hexahedron or cube		8	12	6	$\mathbf{2}$
Octahedron		6	12	8	$\mathbf{2}$
Dodecahedron		20	30	12	$\mathbf{2}$
Icosahedron		12	30	20	$\mathbf{2}$

Euler formula

[Euler] The following relation exists and faces in a connected planar g

Euler characteristic

In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler-Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent. It is commonly denoted by (Greek lower-case letter chi).

Euler characteristic - Wikipedia

https://en.wikipedia.org/wiki/Euler_characteristic

Notes:

- For c connected components: v-e $+\mathrm{f}-\mathrm{c}=1$
- $v-e+f=2$ also true for any convex polyhedral surface in 3D
- $v-e+f$ is called the Euler characteristic, X
- X is an invariant that describes the shape of space
- it is $X=2$ for planar graphs and convex polyhedra
- can be extended to other topological spaces

The surfaces of nonconvex polyhedra can have various Euler characteristics;

WikipediA
 The Free Encyclopedia

From Euler formula to size of triangulations

$n=n b$ of points
e = nb. edges
$\mathrm{f}=\mathrm{nb}$ faces

- A triangulation is a planar graph, so $n-e+f=2$ [Euler]
- Furthermore, each triangle has 3 edges and each edge is in precisely 2 triangles (assuming the outside face is a triangle). This means $3 f=2 e$.
- We get:
- the number of faces in a triangulation with n vertices is $f=2 n-4$
- the number of edges in a triangulation with n vertices is $e=3 n-6$
- If the outside face is not triangulated it can be shown that
- $e<3 n-6, f<2 n-4$
- Intuition: Given n points, the planar graph with largest number of edges and faces is a complete triangulation.

Theorem:

A triangulation with n vertices has at most $3 n-6$ edges and at most $2 n-4$ faces.

Known results

- Any planar graph has a planar straight-line drawing where edges do not intersect [Fary's theorem].
- A graph is planar iff it has no subgraphs isomorphic with K5 or K3,3 [Kuratowski's theorem].

- Any planar graph ==> has a dual graph.
- A graph is planar $<==$ it has a (well-defined) dual graph.
- Any planar graph has at least one vertex of degree $<=5$.
- Computationally: There are a number of efficient algorithms for planarity testing that run in $o\left(n^{3}\right)$, but are difficult to implement.

End Detour

Data structures for TINs

```
The problem: How much memory do we need to store a TIN into a
topological structure?
    - edge-based
    -triangle-based
Denote
    - n = number of points in the TIN
    - e = number of edges
    - f = number of triangles (faces)
```

Answer:
We'll use that: a triangulation with n vertices has $e<=3 n-6$ and $f<=2 n-4$

Grid or TIN?

Grid

- Pros:
- implicit topology
- implicit geometry
- simple algorithms
- readily available in this form
- Cons:
- uniform resolution ==> space waste
- space becomes prohibitive as resolution increases

TIN

- Pros:
- variable resolution
- space efficient (potentially)
- Cons:
- need to built the TIN (grid \longrightarrow TIN)
- stored topology takes space
- more complex programming (pointers..);

Grid or TIN?

```
We have an elevation grid for an area of 300km-by-300km at 1m
resolution. The elevation values are represented as floating point
numbers (4B).
A. How much space does the grid use (in GB)?
B. Assume the grid undergoes a process of simplification, so that
90% of the grid points are eliminated, leaving 10% of the points.
These points are represented as a TIN with a topological edge-
based structure. How much space does the TIN use (in GB)?
```

Answer:

Grid-to-tin simplification

Summary

- Data models: raster and vector
- Networks
- Terrains
- rasters
- TINs
- Topological structures for TINs
- Planarity
- Euler formula $V-E+F=2$
- A triangulation is a planar graph, and $e<3 n$ and $f<2 n$
- Grid or TIN?

