
Class work: Matrix layouts and space-filling curves

Laura Toma, csci3225, Bowdoin College

1. Consider a matrix of size n by n layed out in row-major order in an array a. Highlight the
part of the array that correspond to the first quadrant a11.

For the sake of this exercise, assume that n = 8.

2. Same setup as above: a matrix a of 8-by-8 elements, layed out in row-major order. Assume
block size is B = 3 elements.

How many blocks span a11 in this case? What cause this? Reflect on best and worst cases.

3. Consider in general a sub-matrix of size r-by-r insize a matrix a (a is laid out in row-major
order). Give an upper bound on how many blocks span the sub-matrix as function of r,B.

Draw examples of best-case and worst-case.

1

4. We want to layout the matrix a so that all elements of a11, a12, a21, a22 are contiguous, re-
spectively (this is often refered as Morton layout). Sketch a function that accomplishes this.

b = calloc(sizeof(double), n*n);

//a is a matrix of size n by n in row-major order

//b should contain the elements in a in the new order

void mortonlayout(double* a, double* b, int n) {

}

For example

• calling mortonlayout(a, b, 2) with a = [1, 2, 3, 4] should write b as b = [1, 2, 3, 4].

• calling mortonlayout(a, b, 4) with

a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]

should write b as

b = [1, 2, 5, 6, 3, 4, 7, 8, 9, 10, 13, 14, 11, 12, 15, 16]

2

5. The claim is that having a matrix in Morton layout simplifies both the algorithm for matrix
multiplication, and also the cache-miss analysis.

Show this by writing the code of matrix multiplication when a, b, c are given in Morton layout.

c = calloc(sizeof(double), n*n);

//a, b are matrices of size n by n in Morton layout

//c is produced in Morton layout as well

void mortonlayout(double* a, double* b, double* c, int n) {

}

6. Cache-miss analysis for matrix multiplication with Morton layout:

(a) How many cache misses to read a block of size r-by-r?

(b) How does this compare to when the matrix is layed out in row-major order?

3

7. Compute the Zindices of 16 2D-points

{(0, 0), (0, 1), ...(3, 3)}

. Draw the Z-order of the points (the points ordered by their z-indices).

4

8. Compute the Zindices of 64 2D-points

{(0, 0), (0, 1), ...(7, 7)}

.

5

9. Sketch code to implement the zinxdex:

//x,y are 32-bit integers

//the result is a 64-bit integer

int64 zindex(int32 x, int32 y)

6

