
Algorithms for GIS

Laura Toma

Bowdoin College

Pointers in C

• p is a pointer to something of type T (p is a T*)

Pointers

T* p;

• Put differently, *p has type T (*p is a T)
• Some programmers actually prefer to write it as

Pointers

T* p;

T *p;

• To dereference p, p has to store a valid address

Pointers

T* p;

T* p;

T a;

p = &a;

p = (T*) malloc(10);

T* q;

q = p;

Pointers

p stores the address of a

p stores the address of a chunk
of 10B of memory on heap

q stores the same address as p

• What’s a valid address?
• the address of a variable
• the address returned by

malloc(), calloc() or realloc()

Pointers

T* p; local variables

…

96

00

stack

heap

high address

low address

• An array is a chunk of memory (on stack or heap)
• The name of an array is the address of the array

• int a[] is the same as int* a
• Operator [] implemented as

• a[0] is the same as *a
• a[1] is the same as *(a + sizeof(int))
• a[2] is the same as *(a + 2*sizeof(int))
• …

Pointers and arrays

int a[10]; a is an int*
a points to a chunk of 10 ints (on the stack)

• You can think of a as an array
• Assuming a is a valid address, you can do *a or a[0]
• Assuming that a+sizeof(T) is a valid address, you can do

*(a + sizeof(int)) or a[1]
• And so on
• Arrays provide convenience, but you can program without

arrays

Pointers and arrays

T* a; a is a T*

• In fact, it’s more efficient to avoid the [] operator and
work directly on the pointer.. But don’t do it!

Pointers and arrays

/* return the length of a null-terminated string str */

unsigned int strlen(char* str) {

 char* p = str;

 while (p && (*p != ‘\0’)) p++;

 return p - str;

}

• How are they different?

Pointers

int* a;

char* b;

double* c;

stack

a: 120
b: 196
c: 144

120
144
196

heaplow address

• They are all addresses !
• The type matters only when you dereference

• *a will read 4 bytes from address a and return it as an int
• *b will read one byte from address b and return it as a char
• *c will read 8 bytes from address c and return it as a double

Pointers

int* a;

char* b;

double* c;

• In fact C probably let’s you do naughty things like
casting pointers

Pointers

int* a;

char* b;

double* c;

char x = *((char*)a);

• Some functions work generically with void* and
you have to cast them to the type that you need

Void pointers

NAME
 qsort, qsort_r - sort an array

SYNOPSIS
 #include <stdlib.h>

 void qsort(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *));

 void qsort_r(void *base, size_t nmemb, size_t size,
 int (*compar)(const void *, const void *, void *),
 void *arg);

void* p; p is an address to something

int my_compare(const void * a, const void *b) {

 point2* p1 = (point2*)a;
 point2* p2 = (point2*)b;
 //now p1 and p2 are pointers to point2

 if (p1.x < p2.x) return -1;
 if (p1.x > p2.x) return 1;
 if (p1.y < p2.y) return -1;
 if (p1.y > p2.y> return 1;
 return 0;
}

The comparison function must return an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to,
or greater than the second. If two members compare as equal, their order in the
sorted array is undefined.typedef struct {

 float x, y;
} point2;

What does this do?

C and pass-by-value

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

when calling fun(x) the value of x is
copied into the parameter a of fun()

• When functions are called, their arguments are passed-
by-value. That is, their values are copied.

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

main() stack frame

main() is called by libc()
stack

argv, argc

return address in libc()

stack pointer

parameters

return address

local variables

…
x: 10

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

main() stack frame

main() is called by libc()

fun() is called by main()

stack
argv, argc

return address in libc()

stack pointer

old SP
return address in main()fun() stack frame

parameters

return address

local variables

parameters

return address

local variables

…
x: 10

a: 10

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

main() stack frame

main() is called by libc()

fun() is called by main()

stack
argv, argc

return address in libc()

stack pointer

old SP
return address in main()fun() stack frame

parameters

return address

local variables

parameters

return address

local variables

…

3

x: 10

a: 10

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

main() stack frame

main() is called by libc()
stack

argv, argc

return address in libc()

x: 10stack pointer

parameters

return address

local variables

…

The value of x does not change!

void fun(int * a) {

 *a = 3;

}

int main(..) {

int x = 10;

fun(&x);

}

To change a, fun() must get its address.

stack
argv, argc

return address in libc()…

To change a, fun() must get its address.

100

high address

84
x: 10

void fun(int * a) {

 *a = 3;

}

int main(..) {

int x = 10;

fun(&x);

}

stack
argv, argc

return address in libc()…

To change a, fun() must get its address.

100

high address

84

old SP
return address in main()

80

x: 10

a: 84

void fun(int * a) {

 *a = 3;

}

int main(..) {

int x = 10;

fun(&x);

}

stack
argv, argc

return address in libc()…

To change a, fun() must get its address.

100

high address

84

old SP
return address in main()

3
80

fun() modifies the
value at address 84

x: 10

a: 84

void fun(int * a) {

 *a = 3;

}

int main(..) {

int x = 10;

fun(&x);

}

stack
argv, argc

return address in libc()…

To change a, fun() must get its address.

100

high address

84
3x: 10

void fun(int * a) {

 *a = 3;

}

int main(..) {

int x = 10;

fun(&x);

}

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

x is not changed

Review

Review

void fun(int a) {

 a = 3;

}

int main(..) {

int x = 10;

fun(x);

}

x is not changed

Review

x is not changed

void fun(T a) {

 a = value of type T;

}

int main(..) {

T x = value of type T;

fun(x);

}

x is not changed

void fun(T a) {

 a = value of type T;

}

int main(..) {

T x = value of type T;

fun(x);

}

x is not changed

T is int*

void fun(int* a) {

 a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(x);

}

x is not changed

void fun(int* a) {

 a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(x);

}

To change a, fun() must get its address.

x is not changed

void fun(int* a) {

 a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(x);

}

To change a, fun() must get its address.

void fun(int** a) {

 *a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(&x);

}

void fun(int** a) {

 *a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(&x);

}

Let’s see how it works, again.

void fun(int** a) {

 *a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(&x);

}

Let’s see how it works, again.

stack
argv, argc

return address in libc()…

high address

x: NULL

100

84

void fun(int** a) {

 *a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(&x);

}

Let’s see how it works, again.

stack
argv, argc

return address in libc()…

high address

old SP
return address in main()

x: NULL

a: 84

100

84

80

x: NULL

void fun(int** a) {

 *a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(&x);

}

Let’s see how it works, again.

stack
argv, argc

return address in libc()…

100

high address

84

old SP
return address in main()

80
a: 84

heap
memory allocated by
malloc

16

x: NULL

void fun(int** a) {

 *a = malloc(..);

}

int main(..) {

int* x = NULL;

fun(&x);

}

Let’s see how it works, again.

stack
argv, argc

return address in libc()…

100

high address

84

old SP
return address in main()

16
80

fun() modifies the value
at address 84

a: 84

heap
memory allocated by
malloc

16

