
Algorithms for GIS

Laura Toma

Bowdoin College

Programming in C:
Pointers, header files and multiple files

Outline

• Programming in C
• Pointers
• .h and .c files
• Compiling
• Working with multiple files
• Using Makefiles

• Programming exercise

 T x;
• Any variable is stored somewhere in memory and thus has an address, which can be

retrieved with operator &
 &x gives the address of variable x

• An address is called a pointer
• The address of a variable of type T is considered to have type T*

 &x has type T*;
• Given an address, we might want to know what is stored at that address. That’s called

dereferencing the pointer, and it is done with operator *
 T* p;
 *p is of type T, and it is the value stored at address p

• Caveat: Dereferencing an invalid address is a BUG.
• A bug of this type doesn’t always manifest, and does not manifest in the same way. That

is, it might give you a segfault. Or not. Still, your program has a bug in it and its behavior
is unpredictable.

Pointers

Pointers

• Rule: make sure a pointer is valid before you dereference it
• by assigning it the address of a variable
• by calling malloc()
• by assigning it the value of another valid pointer

Pointers

• Rule: make sure a pointer is valid before you dereference it
• by assigning it the address of a variable
• by calling malloc()
• by assigning it the value of another valid pointer

• Perhaps this is boring.. Consider this.
• You WILL get segfaults
• You will spend a LONG time figuring it out
• It’s ALWAYS because you break this one rule

Pointers

• Rule: make sure a pointer is valid before you dereference it
• by assigning it the address of a variable
• by calling malloc()
• by assigning it the value of another valid pointer

• Perhaps this is boring.. Consider this.
• You WILL get segfaults
• You will spend a LONG time figuring it out
• It’s ALWAYS because you break this one rule

• And remember,
• Bad memory references do not always manifest
• The program might work fine on one computer, but not on other.

Exercise

• We want to write a function to allocate an array of n element of type T
• We’ll write it two ways:

1. return the array

2. take the array as parameter

Do both work?

//assume T is a type

T* create(int n) {

 T* result;

 result = (T*)malloc(n*sizeof(T));

 assert(result);

 return result;

}

int n=100;

T* x;

x = create(n);

//is x an array of 100 elements?

//assume T is a type

void create(int n, T* a) {

 a = (T*) malloc(n*sizeof(T));

 assert(a);

}

int n=100;

T* x;

create(n, x);

//is x an array of 100 elements?

Why doesn’t this work?

//assume T is a type

void create(int n, T* a) {

 a = (T*) malloc(n*sizeof(T));

 assert(a);

}

int n=100;

T* x;

create(n, x);

//is x an array of 100 elements?

Why doesn’t this work?

//assume T is a type

void create(int n, T* a) {

 a = (T*) malloc(n*sizeof(T));

 assert(a);

}

int n=100;

T* x;

create(n, x);

//is x an array of 100 elements?

• a is set correctly inside create()

• But, it’s value does not change outside the function

• Implement this and get a feel for how this bug
manifests. Can you find some instances where the
program runs seemingly well? What does this show?
Can you make it crash?

• Fix it!

Exercises

C programming

• C gives a lot of freedom for bad style
• Debugging can be hell. Really.

• Good practices
• Modularize
• Separate interface from implementation
• Program with asserts.
• Unit testing: Write test modules for EVERYTHING
• Structure your code assuming there are tests for everything

• This will change how you design your code

Header files

Header files

• list.h:
• is the interface to the outside

world
• contains type definitions and

signature of functions that are
meant to be used by other
modules

• list.c:
• implements all functions in list.h

list.c

list.h

/* list.c */

#include “list.h”

List* init() {
 //implement init
 …
}

/* list.h */

typedef struct node_t {
 int data;
 struct node_t* next;
}

typedef struct list_t {
 Node* head;
} List;

List* init();
…

Example: implement a linked list

Working with multiple files

Working with multiple files

• If test.c needs to use some list functions
• #include “list.h”

list.c

list.h test.h

test.c

/* test.c */

#include “test.h”
#include “list.h”

…

int main() {
 ….
}

Working with multiple files

• Compilation has 2 phases
• compile only (gcc -c): each xxx.c file ==> xxx.o file
• for each file that contains a main():

• link the .o files of the headers that it needs to
create the executable

list.c

list.h test.h

test.c

/* test.c */

#include “test.h”
#include “list.h”

…

int main() {
 ….
}

gcc -c list.c -o list.o
gcc -c test.c -o test.o
gcc list.o test.o -o test
./test

Working with multiple files

list.c

list.h test.h

test.c

list.o test.o
test.o has a symbol table with
external functions, but no info
on where they are defined

/* test.c */

#include “test.h”
#include “list.h”

…

int main() {
 ….
}

gcc -c list.c -o list.o
gcc -c test.c -o test.o
gcc list.o test.o -o test
./test

Working with multiple files

list.c

list.h test.h

test.c

list.o test.o
test.o has a symbol table with
external functions, but no info
on where they are defined

/* test.c */

#include “test.h”
#include “list.h”

…

int main() {
 ….
}

test link phase links the files
together and fills in the
addresses of functions in the
symbol table

gcc -c list.c -o list.o
gcc -c test.c -o test.o
gcc list.o test.o -o test
./test

Complex dependency graph

xx.c

xx.h

yy.h

yy.c

/* ww.c */

#include “xx.h”
#include “yy.h”
#include “zz.h”

…

• Each file must include all headers it needs

• The dependency graph cannot have cycles

• If it has cycles ==> very weird compile errors

zz.h

zz.c

ww.c

Complex dependency graph

xx.c

xx.h

yy.h

yy.c

/* ww.c */

#include “xx.h”
#include “yy.h”
#include “zz.h”

…

zz.h

zz.c
(main)

ww.c
(main)

xx.o yy.o zz.o ww.o

zz ww

Why?

• For efficiency
• compiling large projects is slow
• if change one line in a file, you re-compile only the object files and

executables that depend on it, directly or indirectly

• make utility
• Makefile specifies dependencies
• ‘make’ keeps track of when files were last modified ==> figures out what

changed and what needs to be recompiled

