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ABSTRACT: 
 
Building outlines are needed for various applications like urban planning, 3D city modelling and updating cadaster. Their automatic 
reconstruction, e.g. from airborne laser scanning data, as regularized shapes is therefore of high relevance. Today’s airborne laser 
scanning technology can produce dense 3D point clouds with high accuracy, which makes it an eligible data source to reconstruct 2D 
building outlines or even 3D building models. In this paper, we propose an automatic building outline extraction and regularization 
method that implements a trade-off between enforcing strict shape restriction and allowing flexible angles using an energy 
minimization approach. The proposed procedure can be summarized for each building as follows: (1) an initial building outline is 
created from a given set of building points with the alpha shape algorithm; (2) a Hough transform is used to determine the main 
directions of the building and to extract line segments which are oriented accordingly; (3) the alpha shape boundary points are then 
repositioned to both follow these segments, but also to respect their original location, favoring long line segments and certain angles. 
The energy function that guides this trade-off is evaluated with the Viterbi algorithm.  
 
 

1. INTRODUCTION 

Building outlines provide substantial information for the urban 
environment and are therefore needed to map urban variation and 
change. Typical applications are urban planning, city modelling 
and disaster management. Manually extracting building outlines 
or other urban features to keep data sets up to date is time and 
cost consuming. 
 
Airborne images and laser scanning have been a major data 
source for building outline extraction. Automating methods, 
achieving more accurate results, faster processing of large data 
sets and transferability to other regions of interest are of main 
interest in ongoing research. Today’s airborne laser scanning 
technology can produce dense 3D point clouds with high 
accuracy, which makes it an eligible data source to reconstruct 
2D building outlines or even 3D building models. 
 
Building extraction from LIDAR point clouds can be divided into 
four parts, i.e. (1) classify the point cloud to separate building 
points from ground, tree, and other urban feature points, (2) 
isolate individual buildings, (3) determine approximate hulls of 
boundary points, and (4) generalize/regularize building outlines 
(Kim and Shan, 2011). Regularization of building outlines is 
needed because initial building outlines from LIDAR point 
clouds are noisy and jagged. Depending on the requirements of 
the application, a generalization is often used to eliminate small 
details. 
 
This paper focuses on the regularization of extracted building 
points from a LIDAR point cloud. The regularization is driven by 
an energy minimization evaluated by the Viterbi algorithm 
(Viterbi, 1967). The proposed approach enables a reconstruction 

of building outlines with more than one main orientation and 
different angles by utilizing different methods to generate input 
for the energy function. 
 
Section 2 gives an overview of related work in the field of 
regularizing building outlines mainly from airborne laser 
scanning data but also with examples from airborne images. 
Section 3 introduces the principles and methods used for the 
proposed approach in detail. Section 4 shows the formulated 
energy terms in detail. Section 5 examines experimental results 
of the algorithm tested on the ISPRS benchmark data set from 
Toronto. Conclusions and an outlook are given in Sections 6. 
 
 

2. RELATED WORK 

A good introduction to previous research in the field of 
regularization of building outlines is given by Jwa et al. (2008). 
A comparative analysis of four representative methods including 
Douglas-Peucker’s algorithm, Local Minimum Description 
Length, Feature Based Model Verification and Rule-based 
Rectification is conducted. They also propose a geometric 
regularization based on Minimum Description Length (MDL) 
called Geometric MDL (GMDL). This method tries to find the 
optimal building polyline by adding a global directional 
constraint. 
 
Huang and Sester (2011) utilize a hybrid method to extract and 
reconstruct building footprints. They first segment the 3D point 
cloud with a 3D Hough transform and then use the acquired 
information, i.e., roof heights and ridges as additional parameters 
for the statistical reconstruction of the building footprint with 
Reversible Jump Markov Chain Monte Carlo (RJMCMC). The 
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proposed method only considers simple rectangular shapes and 
therefore has to be adapted for shapes that are more complex. 
 
Jarzabek-Rychard (2012) applies Random Sample Consensus 
(RANSAC) to detect straight lines in a height image derived from 
a LIDAR point cloud. Regularization is then performed by 
merging close parallel line segments and adjusting angles 
according to a mean direction calculated from the longest line 
segments. Rectangularity and parallelism are used as hard 
constraints and therefore different orientations or angles are not 
considered. 
 
Similar to the proposed method in this paper Fazan and Dal Poz 
(2013) present a building roof extraction based on snakes and 
dynamic programming, but performed on airborne images. An 
energy function is used to optimize the building outline and to 
refine the results. A drawback of the proposed method is that the 
weighting functions favor right angles and therefore only work 
for buildings with simple rectangular shapes. 
 
Another approach based on energy minimization is presented by 
He et al. (2014). The alpha shape algorithm is used to delineate 
the initial building boundary, which is then simplified with an 
adapted Douglas-Peucker algorithm called Vertex-driven 
Douglas-Peucker, which utilizes energy minimization and 
focuses on the complexity of the resulting polygon. The 
regularization is then divided and tested in an explicit and 
implicit reconstruction that either focus on robustness and 
accuracy or completeness and topological correctness. 
 
An exhaustive overview of current research regarding building 
extraction from airborne laser scanning data is also provided by 
Tomljenovic et al. (2015). 
 
 

3. PROPOSED APPROACH 

An overview of the proposed approach to extract and regularize 
building outlines is summarized in Figure 1. As this papers 
primary focus lies on the regularization by energy minimization, 
the first two steps of the proposed workflow (classification of 
point cloud and building point extraction) are only mentioned but 
not laid out in detail. 
 

 
Figure 1. Workflow for regularizing building footprints. 

 

For the regularization of building outlines, the alpha shape 
boundary points are considered as observations in a Markov 
Chain model. All extracted and delineated information (e.g. 
Hough transform line segments and corner point hypotheses) is 
then used as input for computing the transition probabilities with 
an energy formulation covering geometric properties suited for 
building outlines. The energy is then evaluated with the Viterbi 
algorithm to propose the optimal states for a regular building 
outline. 
 
3.1 Building boundary points 

The first step in creating an outline for a specific building starts 
with the generation of an approximate hull to extract all bounding 
points. The alpha shape algorithm (Edelsbrunner et al., 1983) is 
used for the given building points and is known to produce 
reliable building boundary points while preserving small details 
(Shahzad and Zhu, 2015, Dorninger and Pfeifer, 2008). Alpha 
shapes are a generalization of the convex hull of a point set but 
have the advantages of being able to be used for both convex and 
concave shapes and extracting polygons with interior and exterior 
boundaries (Shen et al., 2011). The alpha value can be adjusted 
to adapt the algorithm to different point cloud densities. As we 
are only interested in the boundary points, all remaining points 
are disregarded for further processing. 
 
3.2 Line segment hypotheses 

To add a first hypothesis about the approximate orientation of the 
regularized building outline we use the well-known Hough 
transform to detect line segments that represent the main 
directions of the building (Guercke and Sester, 2011, Duda and 
Hart, 1972). The main idea behind Hough transform is to perform 
a line detection in a parameter space, also called Hough space. In 
this parameter space, a line is no longer described as a line but by 
its parametric representation, in this case the normal 
parameterization as shown in this equation: 
 

𝑑 = 𝑥𝑖 cos 𝛼 + 𝑦𝑖 sin 𝛼 (1) 
 
where  d : distance from the origin 
 𝛼 : direction of the line normal, restricted to [0, 180] 
 𝑥𝑖, 𝑦𝑖 : point coordinates 
 
The Hough space is defined by the variables 𝛼 and 𝑑. Each point 
is transformed into a sinusoidal curve in the Hough space. The 
curves of collinear points intersect in the Hough space in one 
point. To find these intersections the Hough space is discretised 
according to a predefined angle and distance resolution. The 
resolution of each interval is a compromise of computation speed 
and accuracy. The resulting raster is also called Hough 
accumulator. Each grid cell, also called bin, counts how many 
curves are passing through. Bins with a high count correspond to 
a high confidence of a detected line segment. By thresholding the 
results, we can assure that bins with a small count are rejected 
and only bins with a favoured count are used for further 
processing. 
 

 
Figure 2. Detailed view of alpha shape boundary points (red) and 
detected line segments by adapted Hough transform (blue). 
 
For our purposes, the Hough transform is slightly adapted as we 
are only interested in line segments aligned to the dominant 
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directions of a building. First, the Hough transform is used to 
delineate line segments. The longest line segment is then used to 
define the first dominant direction. Then all other aligned line 
segments (𝑎𝑛𝑔𝑙𝑒 ∈ {45°, 90°, 135°, 180°}) are searched for and 
all boundary points in close proximity (< 0.1𝑚) are removed. 
The Hough transform is then repeated with the reduced point list 
until no more dominant orientations are found. Figure 2 shows an 
excerpt of the Hough transform applied to the boundary points of 
an alpha shape. Additionally, a minimum length threshold of 
1.5 m is used to reject small line segments that would disturb 
further processing. 
 
3.3 Merging line segments 

As shown in the previous chapter, the Hough transform can 
detect more than one line segment for a given set of points. An 
iterative line segment grouping based on parallelism and 
proximity followed by merging grouped line segments is used to 
reduce a group to one or more average line segments from which 
we can later compute intersection points. 
 
First, the longest line segment 𝑙𝑙𝑜𝑛𝑔 is added to 𝐿𝑚𝑒𝑟𝑔𝑒 and 
removed from the set of all detected line segments. Then each 
line segment in the set of remaining line segments 𝐿𝑟𝑒𝑚𝑎𝑖𝑛 is 
checked for parallelism to 𝑙𝑙𝑜𝑛𝑔 followed by computing the 
perpendicular distance. If the distance is smaller than a given 
threshold, it is added to the set of line segments to be merged 
𝐿𝑚𝑒𝑟𝑔𝑒 and removed from 𝐿𝑟𝑒𝑚𝑎𝑖𝑛. When all line segments are 
processed, line segments in 𝐿𝑚𝑒𝑟𝑔𝑒 are further examined to see if 
they can be combined. For this, an average line is computed 
based on all given line segments in 𝐿𝑚𝑒𝑟𝑔𝑒 weighted by their 
length to function as a base line. Then a line tracing is started 
with the longest line segment. If other line segments overlap or 
are closer than 2 m a union is performed and the minimum and 
maximum extent of the longest line segment is changed 
accordingly. The computed extents are then projected on the 
average line to create the combined line segments. Figure 3 
shows an example of four parallel line segments that are merged 
to one average line segment where a short gap is filled. One 
advantage of using all line segments in a group is that building 
objects like porches or balconies with small disparities to the 
building outline are all assigned to one base line. This 
information can later be used by the energy evaluation to align 
parallel or collinear line segments. 
 

 
Figure 3. Line segments from Hough transform (blue) are merged 
to one or more collinear line segments (red). 

 
After merging, the overall process continues by emptying 𝐿𝑚𝑒𝑟𝑔𝑒 
and selecting again the longest line segment from 𝐿𝑟𝑒𝑚𝑎𝑖𝑛 and 
searching for close line segments. The process stops when 
𝐿𝑟𝑒𝑚𝑎𝑖𝑛 is empty.  
 
To know which line segments are adjacent to each other and for 
faster processing in subsequent steps, the resulting line segments 
are sorted. This is done by starting with an endpoint of the longest 
line segment and searching for the closest start point of any other 
line segment. The endpoint of the closest line segment is then 
used for the next search and so on. 
 
3.4 Corner point hypotheses 

Next to boundary points and line segment hypotheses, possible 
corner points of the building outline add important information 
for reconstruction. On the one hand hypothetical corner points 

give information where a building wall probably ends and on the 
other hand give information where the dominant direction of a 
building changes and therefore hard angle constraints in further 
processing can be lowered. 
Intersecting each consecutive merged line segment from the 
previous step results in a set of corner point hypotheses for 
further processing. However, it is possible that two consecutive 
line segments are parallel and therefore never share an 
intersection point. This usually happens when the Hough 
transform fails to detect a line segment because there were not 
enough boundary points to support the line segment or detected 
line segments were too short and were therefore rejected by given 
thresholds.  

 
 

(a) (b) 
Figure 4. Special cases for adding corner points (red) for (a)  
Z-shape and (b) for U-Shape with missing line segment (dotted). 
 
In two cases, supplementary corner points are added when a line 
segment is probably missing between two detected parallel line 
segments: (1) the line segments form a Z-shape or (2) a U-Shape 
(Figure 4). For the first case, the extent from each line segment 
to the dropped foot of the perpendicular from the other line 
segment is computed. At the midpoint of each extent, a possible 
corner point is added. Figure 4 (a) illustrates how the first case 
overcomes a region of few alpha shape boundary points that lead 
to a missing line segment. For the second case, only the extent 
from the shorter line segment to the dropped foot of the 
perpendicular from the longer line segment is used to add one 
hypothetical corner point. Figure 4 (b) illustrates this case. 
 
3.5 Energy evaluation 

The Viterbi algorithm is a dynamic programming approach to 
compute the most likely sequence of observations given a 
specific Markov Chain (Viterbi, 1967, Forney, 1973). It is widely 
used for many applications like speech recognition, bio-
informatics or digital communication. To apply the Viterbi 
algorithm the Markov model is formulated as follows: 

x boundary points of the computed alpha shape are the 
given sequence of observations 𝑋 = 𝑥1, 𝑥2, … , 𝑥𝑛 

x we search for the most probable corresponding 
sequence of hidden states 𝑍 = 𝑧1, 𝑧2, … , 𝑧𝑛 

x transition probabilities are defined as a transition 
matrix 𝐴𝑖𝑗, where 𝑎𝑖𝑗 is the probability of moving from 
state 𝑖 to state 𝑗. 

 
For each observation a state grid is created, that relates to several 
potential candidates for each building outline point. To discretize 
the search space for all candidate hypotheses, the grid dimension 
is limited to the input data. Each observation is assigned to one 
merged line segment and its corresponding Hough line segments. 
After assignment, the states are computed with the following 
rules: 

x the observation point is projected on each assigned line 
and a state grid with a specific resolution is created 

x if a corner point is in close proximity of the observation 
point, an additional state grid is created around the 
corner point 
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The grid resolution is variable and depends on the point density 
of the point cloud. State points that superpose each other are 
removed to reduce complexity and time for the later energy 
computation. A clipped example of a resulting state grid is given 
in Figure 5. The four blue points represent alpha shape points, the 
blue lines are Hough line segments and the green line is the 
corresponding merged line, red points are the states. The bold red 
point is a corner point hypothesis and therefore an additional state 
grid is added to the far left alpha shape point. 

 
Figure 5. Example of a search space (red points) for four 
observations (blue points). 
 
 

4. ENERGY FORMULATION 

The proposed energy formulation has been developed with an 
emphasis on regularizing simple rectangular shapes, but also 
allowing angles to differ from 45° and 90°, when the underlying 
observation supports the change in main orientation. The 
proposed energy function is divided in three individual terms 
each with an emphasis on a specific geometric property: 
 

𝐸 =  𝛼𝐸𝑑𝑖𝑠𝑡 + 𝛽𝐸𝑎𝑛𝑔𝑙𝑒 + 𝛾𝐸𝑙𝑒𝑛𝑔𝑡ℎ (2) 
 
where  𝛼, 𝛽, 𝛾 : weight factors 
 
The distance term 𝐸𝑑𝑖𝑠𝑡 keeps the solution close to the input 
observation; the angle term 𝐸𝑎𝑛𝑔𝑙𝑒 penalizes undesired angles; 
the length term 𝐸𝑙𝑒𝑛𝑔𝑡ℎ is used to prevent too many changes of 
direction and to keep the resulting polygon as simple as possible 
by preferring long line segments. The influence of each term is 
determined by weight factors 𝛼, 𝛽, 𝛾. Depending on the input 
observations, the weight factors can be adjusted. In the presented 
experiments in Section 5 the weight factors are determined 
empirically but specific assumptions can be postulated 
beforehand. Both angle and length term are always weighted 
higher than the distance term, because the search space is 
relatively small and a too high weight on the distance term would 
fix the result to the original observation point. The angle and 
length term are mostly weighted equally as both terms are 
independent on the observation and each term should influence 
the regularization. Each term is explained in detail in the 
following sections. 
 
4.1 Energy distances term 

The distance term is used to increase the energy for estimated 
building outline points with a high distance from the observed 
point (boundary alpha shape point). A simple squared distance 
between both input points is computed:  
 

𝐸𝑑𝑖𝑠𝑡(𝑧, 𝑥) = ∑|𝑧𝑖 − 𝑥𝑖|2
𝑛

𝑖=1

 (3) 

 
where  𝑥𝑖, … , 𝑥𝑛 : observed (alpha shape) points 
 𝑧𝑖, … , 𝑧𝑛 : state grid points 
 

4.2 Energy angle term 

The angle term is used to weight occurring angles between each 
consecutive state and its corresponding line segment. By adding 
a specific weight, we favor certain angles but also allow 
unexpected angles in special cases. With this lenient function, we 
can avoid hard constraints: 

𝐸𝑎𝑛𝑔𝑙𝑒(𝑙) = ∑ 𝐴(𝑙𝑖, 𝑙(𝑖+1)𝑚𝑜𝑑 𝑚 )
𝑚

𝑖=1

 

 

(4) 
 

𝐴(𝑙1, 𝑙2) = {

0 𝑓𝑜𝑟 ∠(𝑙1, 𝑙2) ∈ {180°}
1.0 𝑓𝑜𝑟 ∠(𝑙1, 𝑙2) ∈ {90°}

1.25 𝑓𝑜𝑟 ∠(𝑙1, 𝑙2) ∈ {45°, 135°}
𝜏 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 
where  𝑙𝑖, … , 𝑙𝑚 : line segments 
 
The weight factor 𝜏 should be adapted to the given data set e.g. 
in relation to the point density. If the value is set too low, changes 
in direction occur more frequent and disturb the overall 
regularization. In this study it is at least the doubled value of the 
weight given for the set of angles {45°, 135°}. 
 
4.3 Energy length term 

Including the length of a generated line segment to the energy 
leads to better results, because many short line segments are less 
likely in building outlines: 
 

𝐸𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) = ∑ 𝐿(𝑙𝑖)
𝑚

𝑖=1

 

 

(6) 
 

𝐿(𝑙) = 𝑒
1

|𝑙| (7) 
 
An exponential function is used for a smooth transition between 
the resulting energy for small and long line segments. 
 
 

5. EXPERIMENTAL RESULTS 

The regularization has been tested on the ISPRS benchmarking 
data set from Toronto with an average point density of about 
6 points/m² (Rottensteiner et al., 2012). It consists of many large 
high-rise buildings that often cast shadows and occlude important 
building parts.  

 
Figure 6. Overview of Toronto test area colorized by height. 

 
Figure 6 shows an overview of the test area with more than thirty 
buildings. Figure 7 shows the results of the building outline 
regularization. Figure 8 gives some examples of buildings with 
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more complex outlines outside the test area along with 
intermediate steps. Buildings (i) and (ii) show, that smaller 
indentations are removed but the overall shape remains intact. 
More complex shapes are shown with buildings (iii) and (iv). 
Overall, the proposed approach produces good results but can fail 
when the point density is too low or important building parts (e.g. 
smaller walls) are not represented in the data. Other important 
influences on the result are size and resolution of the search 
space. A bigger search space often leads to better results but also 
increases the processing time intensely. As He et al. (2014) note, 
the sensor scanning pattern also directly influences the results. 
The scanning pattern often leads to missing boundary points of 
roofs and therefore the line segment delineation with the Hough 
transform fails (for example building 6 in Figure 7). 
 
Preliminary tests on a data set with a higher point density than 
the ISPRS data set showed an increased accuracy of the resulting 
outlines and an overall increased number of correctly extracted 
outlines. 

 
Figure 7. Results of the building outline regularization for the 
Toronto test area. 
 

 

(i) 

    

(ii) 

    

(iii) 

    

(iv) 

    

 
(a) Extracted building 

points 
(b) Alpha shape  
boundary points 

(c) Extracted lines from 
Hough transform and corner 

point hypotheses 

(d) Regularized  
building outlines 

Figure 8. Results with intermediate steps for buildings from the Toronto data set. 
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6. CONSCLUSION AND OUTLOOK 

In this paper, an automated algorithm to regularize building 
outlines from LiDAR point clouds based on energy minimization 
has been shown. The energy function that guides this trade-off is 
evaluated with the Viterbi algorithm. 
 
If the method can extract sufficient information from the 
boundary points of a building, the proposed approach shows good 
results for point clouds with a point density greater than 6 
points/m². The overall shape of buildings is preserved while 
small anomalies are eliminated. 
 
An advantage over other methods is that the presented approach 
allows more than one main orientation in buildings and can 
therefore represent shapes that are more complex. 
 
We see the proposed approach as a first step towards a full 
processing pipeline to regularized 3D building roof outlines. To 
accomplish this task further testing on different datasets is 
planned and an evaluation with reference building outlines is 
needed. One aim is to include symmetries to the regularization 
process to consider recurring building shape parts. The next step 
would be to include several new energy terms to contemplate 3D 
features. Slope and topology of roof segments are, for example, 
suited for further examination. 
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