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Evaluation of LiDAR and image segmentation based classification
techniques for automatic building footprint extraction for a segment

of Atlantic County, New Jersey
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(Received 30 January 2015; accepted 13 July 2015)

Extracting high-quality building footprints is a basic requirement in multiple sectors
of town planning, disaster management, 3D visualization, etc. In the current study,
we compare three different techniques for acquiring building footprints using
(i) LiDAR, (ii) object-oriented classification (OOC) applied on high-resolution aerial
photographs and (iii) digital surface models generated from interpolated LiDAR
point cloud data. The three outputs were compared with a digitized sample of build-
ing polygons quantitatively by computing the errors of commission and omission,
and qualitatively using statistical operations. These findings showed that building
footprints derived from OOC gave highest regression and correlation values with
least commission error. The R2 and R values (0.86 and 0.92, respectively) imply that
the footprint areas derived by OOC matched more closely with the actual area of
buildings, while a low commission error of 24.7% represented a higher number of
footprints as correctly classified.

Keywords: LiDAR; building footprints; object-oriented classification; image
segmentation; DSM

1. Introduction

The need to extract good-quality building footprints has grown due to their widespread
use in various domains of spatial planning. Since planning is not possible without data
inventories, automatic techniques become important in order to save time and
resources. By definition, a building footprint is the outer boundary of a building
encompassing the exterior walls without including courtyards/gardens. It basically helps
in creating an exterior reconstruction of the walls and the roof especially useful for 3D
visualization. Building footprint extraction is also an important segment for the creation
of virtual navigation models as they not only localize buildings within a point cloud,
but also reduce the search space for vertical walls and step edges, which are generally
believed to be one of the most difficult components of roof modelling (Suveg &
Vosselman 2002; Uden & Zipf 2013).

Lee et al. (2008) have characterized building detection process into three groups.
First method uses 2D or 3D information from photogrammetric imagery (Hinz &
Baumgartner 2003) which depends upon resolution of images; however, the complexity
of such methods increases with 3D information derivation, occlusion and shadows and
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nearby objects or trees of similar heights (Lee et al. 2008; Vu et al. 2009; Maan et al.,
2014). Second method is using LiDAR data to detect building footprints; however,
using LiDAR also raises concern on poor accuracy on building edges and geometrically
precise boundary using only LiDAR point cloud (Rottensteiner 2003; Yong & Huayi
2008). The third category of methods uses both LIDAR data and photogrammetric ima-
gery. More specifically, intensity and height information in LIDAR data can be used
with texture and region boundary information in aerial imagery to improve accuracy
(Lee et al. 2008). Over the past few decades, the multifaceted advantages of LiDAR
data have been realized and put to proper use in various sectors like urban planning
(Priestnall et al. 2000), hydraulic and hydrologic modelling (French 2003), ecosystem
studies (Lefsky et al. 2002; Hyde et al. 2005; Gwenzi & Lefsky 2014; Tang & Dai
2014), coastal management (Pe’eri & Long 2011; Collin et al. 2012; Yousef et al.
2013) and many more. Within the domain of urban planning, LiDAR technology has
been effectively employed for mapping building footprints, identifying building heights,
determination of lines of sight, site planning and design (Priestnall et al. 2000;
Alexander et al. 2009; Vu et al. 2009; Patino & Duque 2013; Xiao et al. 2012). The
applications of LiDAR have become furthermore seamless due to its powerful integra-
tion with other data-sets like orthophotos, multispectral, hyperspectral and panchromatic
imagery (Vu et al. 2009; Kabolizade et al. 2010; Awrangjeb et al. 2013; Tang & Dai
2014). The use of LiDAR data with high density of points (at least 4–6 points per
square meter) jointly with 2D vector digital maps of building footprints, allows the
construction of a 2.5D urban surface model (Carneiro et al. 2009). Alongside, image
segmentation – a process of dividing or disintegrating the image into objects or regions
with homogenous spatial and spectral characteristics for the purpose of feature extrac-
tion (Haralick & Shapiro 1985; Pesaresi & Benediktsson 2001; Ouma et al. 2008;
Sridharan & Qiu 2013; Bhandari et al. 2014) – is also being valued as an alternative
method. Object-oriented classification (OOC) is driven by an understanding of the
image object rather than its pixels (Wegner, 1987; Wang et al. 2004; Bhaskaran et al.
2010), where each image object is a homogenous group of pixels/regions that have
similar spectral and/or spatial characteristics. Liu et al. (2005) performed OOC followed
by a fuzzy rule-based logical classification of the segments to distinguish between
building and non-building objects, giving the opportunity to include size, shape and
texture parameters along with the usual spatial and spectral homogeneity, making the
process more valuable. Apart from LiDAR data classification and OOC-derived foot-
print extraction techniques, another approach discussed in this paper is that of deriving
footprints from digital surface models (DSMs). Brédif et al. (2013) have exhibited a
valid approach for deriving footprints using DSMs, which can be directly obtained
from the 3D point cloud provided by LiDAR sensors, or with surface reconstruction
techniques using multiple images (Pierrot-Deseilligny & Paparoditis 2006; Hirschmuller
2008). Automated extraction is also difficult due to obstructions caused by surrounding
objects or shadows; heterogeneous structures in terms of shape, size, pattern, geometry,
etc. causing difficulty in precise edge detection (Sahar et al. 2010). One more common
difficulty that has plagued such algorithms is that there is generally a lot of noise in the
data points that lie around the edges of buildings which can be caused by overhanging
trees and sensor noise.

With the above background, the current study compares three different approaches
of building footprint extraction, which are (1) LiDAR point cloud-based classification,
(2) OOC-based classification applied on aerial photographs and (3) LiDAR point
cloud-derived DSM classification. Further, the authors have aimed to validate the
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methods by comparing the resultant footprints – based on quantitative and qualitative
statistical analysis discussed in the subsequent sections.

1.1. Study area and data specifications

The study area consists of four cities of the Atlantic County, New Jersey state of the
USA. These four cities are Atlantic (44.125 km2), Ventnor city (9 km2), Margate city
and Longport (4 km2 each) totalling up to approximately 60 km2 in area under study
(Figure 1). The latitudinal extent of the study area is 39°18′ N to 39°23′ N while its
longitudinal extent is 74°32′ W to 74°24′ W located at the south eastern coast of
Atlantic county in the state of New Jersey. Out of the four states, the northern two i.e.
Atlantic and Ventnor have a greater density of high-rise buildings (15 stories and
above) with complex architectures while Margate and Longport comprise more of mid
rise (8–15 stories) and low-rise buildings (8 stories and below) due to a larger area cov-
ered by residential units. This prevalent heterogenity of high-/mid-/low-rise building
structures was a major reason for choosing this area for study. Another reason for
selection was the availability of both – LiDAR data-sets and high-resolution aerial pho-
tographs (used for OOC) for this area. Details and specifications of the data-sets that
have been used in the study are mentioned in Table 1.

Figure 1. Study area.
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2. Methodology

2.1. Methods for footprint extraction

2.1.1. Capturing building footprints using LiDAR point clouds

Extraction of building footprints for the four cities of the study area was performed on
22 tiles of LiDAR point clouds. The LiDAR data-sets were by default ‘unclassified’,
i.e. no distinction existed between the points returned from the ground and those from
a building/structure. These point clouds had to be first filtered and cleansed to classify
the data appropriately. For this, QCoherent’s LP360 (Advanced Version) was employed,
which is a widely used software package meant for managing huge amounts of LiDAR
data, also having a multitude of point cloud tasks for the purpose of filtering and classi-
fying LiDAR Archive Standard (LAS) files. These tasks are specially designed to
address several stages of processing LAS files; for instance, tasks for filtering data,
masking data, classification, exporting subsets from the data, etc. It has an advantage
over other LiDAR processing software which has its direct linkage with ArcGIS
environment, allowing interoperability between LAS format files and other GIS data. In
the current study, several objective-based tasks have been applied, where each task is
dedicated for processing a particular objective e.g. differentiating the non-ground points
from the unclassified point cloud; filtering of data as per height, etc. An in-depth
description of the tasks used in the study is given below:

• Step 1: Filtering of ground points:

The ‘unclassified’ point cloud (Figure 2(a)) is segregated into ground and non-
ground points using adaptive TIN ground filtering point cloud task (Figure 2(b)). The
performance of this task is briefly summarized below:

Table 1. Data specifications of the study.

Data format Resolution DOA Source Projection

LiDAR points
(LAS files)

Point spacing
<1 m

April
2010

US geological
survey

NAD83/2007 New Jersey
state plane coordinate
system in US survey feet

Aerial photographs
(MrSID files)

1 × 1 ft 2007 New Jersey
geographic
information
network

NAD83/2007 New Jersey
state plane coordinate
system in US survey feet
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In this operation, all points with elevation greater than the ground elevation (user
defined) are classified as non-ground points.

• Step 2: Classification on non-ground points:

All points classified as non-ground points from a LiDAR data-set may not necessar-
ily be buildings. Hence, the components of shape, area, height and pattern come into
play. The planar filter and Height or Basic filters are used in conjunction to deduce the
building points from the point clouds. The planar filter point cloud task is a planar-
based point classifier, which searches for points that fit user-defined planes and classi-
fies those points to a user-specified class. The software supports classification and
export of LiDAR points (into other formats) belonging to different user-defined classes
like buildings, vegetation, ground, water, etc. In this case, the user-specified class was
buildings. Along with the execution of the planar filter, the data also need to be classi-
fied using the Height or Basic filters merely on the basis of elevation. The Height filter
divides the points in the building class as per a user-specified maximum and minimum
height constraint. For this, a calculation of the distance between (a) ground and the
lowest planar surface; and (b) ground and the highest planar surface must be done for
getting minimum and maximum height values, respectively. The essential parameters
involved in these tasks are the following:

(1) Units: These are the units of measurement for all parameters fed into the system
for filtering, which can be changed as per requirement of the user, not necessar-
ily matching with the units of the data. In the current study, units of measure-
ment were feet.

(2) Point spacing: This distance is used to construct a moving window where the
moving window will have a length and width of twice the point spacing
value. A window sized with the dimensions as previously described, is fit
around each point and an equation of a plane will be fit to these points. If
the area of the planar surfaces is less than the dimensions of the moving win-
dow, then they are not classified. Several trials are required before arriving at
the optimum value, which can be achieved by visual inspection across the
data-set.

(3) Maximum area: The maximum object area parameter is used as a limit to the
surface growth. An increasing maximum area would cause more points to be
classified as the limit of region growing is expanded. A value 5000 ft was

Figure 2. (a) Point clouds as unclassified points; (b) ground and non-ground points; (c) building
points and ground points.
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considered to be appropriate for this function as the largest buildings in the
study area had dimensions of ≤5000 ft.

(4) Z threshold: The Z threshold parameter represents the maximum orthogonal
distance to the plane under consideration required for a point to be classified.
It depends on the accuracy of the point cloud as it further affects the vertical
accuracy at which the points would be classified.

(5) Plane fit: This is used to determine the ‘goodness of fit’ test of the particular
plane i.e. it shows the variance of the residuals of the fitted plane.

(6) Minimum and maximum slope: The object slope is in degrees. Planes with
slopes less than or greater than the minimum and maximum slopes, respec-
tively, are not classified.

(7) Minimum and maximum height: Points with a height above the ground sur-
face and below the minimum/maximum object height value will not be evalu-
ated and is applicable only when the ‘Use Height Filter’ option is checked.

(8) Clean up percent: This value affects the degree of missed points to be cleaned
up thereby removing the noisy points.

However, it must be noted that this task does not create vectors (footprints in this
case) and only ‘re-classifies’ the data into a defined class. Figure 2(a) and (b) shows
the unclassified point cloud and ground (green) and non-ground points (black), respec-
tively, while Figure 2(c) represents the result of the Height filters with building points
shown in red and ground points shown in green.

• Step 3: Extraction of building footprints:

Once the non-ground points are categorized into a ‘Building’ class, the point group
tracing task was executed to trace boundaries along the class. Figure 3 illustrates a pre-
view window showing the pattern of footprints identified using the building extractor
parameters. This task completes the vectorization process of the classified points derived
by Step 2. The traced outlines are then exported as shapefiles along with attributes.

Figure 3. Example of preview window showing the polygons of building footprints growing
along the structures (using the building extractor parameters explained in Step 3 under
Section 2.1.1).

6 R. Prerna and C.K. Singh

D
ow

nl
oa

de
d 

by
 [

Ja
w

ah
ar

la
l N

eh
ru

 U
ni

ve
rs

ity
] 

at
 2

2:
23

 0
5 

O
ct

ob
er

 2
01

5 



Results so obtained had to be smoothed because of the occurrence of noisy points
near the building edges. This was performed using a squaring function that drastically
helped in producing smoother and neater polygons. The variation in building polygons
before squaring (in red) and those obtained after squaring (in yellow) is clearly seen in
Figure 4.

For successfully employing the various tasks, the analyst needs to be acquainted
with the study area and the data-set to be able to provide correct parametric values.
Units of measurement, point spacing, trace window size, Z threshold, min–max slope,
height, etc. are some parameters for which accurate values must be given. These have
been described below:

(1) Grow window: The Grow Window parameter is a moving window size used to
group points based on the Boundary Trace Class. Its application is same as the
point spacing parameter in the previous task. Grouping of adjacent objects is
possible if the grow window is large. A window of 04 ft was chosen as
optimum value as it seemed to capture even the minute building edges/corners.

(2) Trace window: The Trace Window parameter is the moving window size used
to trace a grouped set of points. This parameter is also dependent on the ground
sample distance. This adds smoothness in the data-set as pointed building edges
get smoothened and squared. It is mostly maintained as twice the grow window
size, hence 08 ft was considered appropriate.

(3) Minimum area: It allows the user to filter small objects from the extracted out-
put. A value of 100 ft implied that a structure with dimensions <100 was not
included in the classification.

(4) Minimum points: This option allows the user to place the points below a certain
threshold into another user-defined class which was kept unchecked because
only building class was needed for this study.

Figure 4. A sample data-set from Longport Borough showing buildings before and after
applying squaring function.
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(5) Perform squaring: This action is done to produce an approximation of the roof
outlines of buildings by squaring the traced outlines. An angle of 20° was
maintained in this study.

2.1.2. Capturing building footprints using image segmentation and OOC

The second aim of the study was to extract building footprints from OOC for which
image segmentation was a pre-processing step. For the purpose of OOC and segmenta-
tion, it was necessary to identify features that were homogeneous not only in terms of
spectral response but also as per shape, size and texture. It was observed that where
building structures displayed similar geometry – shape, size and rooftop tone; objects
were more easily identified as opposed to regions where heterogeneity existed in the
building shapes.

The first part of segmenting the image (Figure 5(A)) was done using the multi-res-
olution segmentation option in eCognition software which executes segmentation based
on input parameters. This software offers the capability of applying different scale
parameters and colour and/or shape combinations decided by the user in order to build
a hierarchical network of image objects whose results are then used to outline different
materials within the image (Ngcofe & Minnaar 2012). The scale and colour parameters
are the most important inputs as they effect segmentation the most. A scale parameter
is used to control the average image object size (Baatz & Schape 2000). The multi-res-
olution segmentation option is a bottom-up approach which moves from the smallest
entity of the image (a pixel) to a larger homogenous object (group of pixels meeting
the criteria). This way, it starts to include other adjacent pixels growing into larger ‘ob-
jects’ making it a local optimization procedure (Karakis et al. 2006). In eCognition, the
scale parameter range is from 5 to 250, which results in variation in the size of the seg-
ments created. A higher scale parameter defined by the user would result in larger sized
objects because the scale value is basically a measure of the number of pixels to be
coalesced as one object. Hence, the concept of image segmentation based on scale is
more of a region merging technique, where at each step – more and more image
objects are merged into one larger object (Baatz & Schape 2000).

Another important parameter to be considered for image segmentation is colour/
spectra. The degree of spectral heterogeneity of image objects can be derived from the
variance or standard deviation (s.d.) of spectral mean values (Baatz & Schape 2000).
In other words, the colour parameter determines the weighted use of spectral value and/
or shape and texture value of an object being studied (Ngcofe & Minnaar 2012). Based
on variance/s.d. values, images get broken down into spectrally homogenous objects
which are identifiable due to spectral contrast existing between pixels. This heterogene-
ity in the image has to be understood before deciding the values for the colour parame-
ter. In eCognition, values range from 0.1 to 0.9 with high weighted values giving more
emphasis on spectra and less on shape, while low values emphasize more on shape and
less on spectra.

In this study, the scale parameter mostly ranged from 45 to 60 while colour ranged
from 0.45 to 0.65. These two input variables were decided after repeated attempts
based on the desirable degree of segmentation. Secondly, in post image segmentation,
classification is performed using the optimal box classifier wherein the user has to spec-
ify sample objects belonging to each class. These sample objects have to be carefully
picked from amongst all the segments and is a manual operation. Here only two classes
– positive (red) and negative (green) can be created for which appropriate samples need
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to be collected. Using these samples, the image is then classified into two classes –
building (red) and non-building (green), which can also be merged so that all objects
belonging to one class could appear as a singular entity.

Finally, the classified vectors were exported as shapefiles (.shp) into the ArcGIS
environment. For ease of handling data, attributes were added to the polygons, in this
case, a simple binary code of 0 and 1 – 0 being non-building and 1 for building. Run-
ning a query on such attributes help in categorizing data so that they can be grouped to
retain only building polygons while the remaining can be discarded. The entire flow of
the image segmentation operation can be understood in Figure 5(A)–(D).

2.1.3. Capturing building footprint using DSM derived from LiDAR point cloud

The third approach for footprint capturing was from DSMs generated from LiDAR
point clouds. This technique has been suggested as an alternative to footprint extraction

Figure 5. (A) Starting from top left, the aerial photograph from a section of the study area is
shown; (B) the image is segmented into several homogenous image objects after feeding scale
and colour parameters; (C) The segments are divided into two classes – building (red) and non-
building (green) based upon user defined samples; (D) exported polygons showing building and
non-building class.
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directly from LiDAR data. The LiDAR data points inclusive of elevation/height values
were exported to ESRI point shapefiles using ArcGIS 10.1. These were interpolated to
a raster surface representing elevation values (using IDW interpolation technique). It is
important to preserve the resolution of the source data and hence the DSMs generated
must conform to that; for instance – if the data points are spaced at every 1 m, the cor-
responding DSM must also be in a 1 × 1 m grid. Figure 6(A) and (B) shows DSM
derived for one portion of the study area with its respective aerial photograph. This
DSM was thereafter classified in ERDAS Imagine 10 using unsupervised tool for
classification and several classes were obtained. The classes were reduced to two –
building and non-building class. Since only the buildings class was important for the
study, the associated polygons were exported as shapefiles. The DSMs derived were
also utilized further to generate triangulated irregular network (TIN) grids for the study
area. Raster to TIN conversion available in ArcGIS 10.1 was applied. Capturing foot-
prints using LiDAR data is often performed using high-end devoted software designed
especially for the purpose. However, this technique would allow analysts to use
good-quality data without following the preordained methodologies of LiDAR data
processing.

Validation of the results attained by the three techniques is explained in the section
below.

2.2. Comparison of automated building footprints with manually digitized footprints

One of the simplest, logical and quantitative measures for assessing the accuracy of
building footprints is to compare the area obtained by an automated technique with the
area of manually digitized building polygons. Such an approach has been previously
followed where simplification techniques of building footprints were suggested and the

Figure 6. (A) DSM generated from LiDAR point cloud showing height (feet); (B) aerial
photograph of the same area.
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accuracy was assessed using area comparisons with the original polygons (Chen et al.
2004). For this, a small segment of buildings (roughly 200) were manually digitized
using the high-resolution aerial photographs in ArcMap 10.1 for creating a data-set of
actual building footprints with area calculation.

Another estimation of accuracy was carried out using commission and omission per-
centages for the three data-sets. In simple terms, percentage of commission denotes the
‘additional’ area included in the footprint results which does not actually exist on ground,
while percentage of omission depicts the ‘left out’ area that is there on ground but not
included in the derived footprints. So in a way, commission error tells how the model has
overestimated footprint area while omission error is a measure of the model’s under-
estimation. This method is an area-based metric method adopted by Rüther et al. (2002).
The commission and omission errors, attained by comparing final building footprints
with corresponding known building footprints (Zhang et al. 2006) has hence been estab-
lished as a useful quantitative method of footprint validation. To facilitate understanding,
it can be said that if an actual ground footprint measures 100 ft2, and if the model predicts
its value as 110 ft2, a commission error of 10% would prevail. On the other hand, if the
model calculates the area to be 90 ft2, 10% of omission error would be committed.

In this study, commission/omission errors were calculated for the 200+ polygons
manually digitized with their corresponding derived footprints – from all three methods.
An average of the values helped in assessing the level of accuracy achieved by the differ-
ent techniques. Qualitative evaluation of the results was also done by regression and
correlation analysis to check the degree of induced errors between the actual and resultant
data. The methodology followed in the study – footprint extraction from LiDAR point
data directly, image segmentation and DSMs has been shown as a flow chart in Figure 7.

3. Results

3.1. Building footprints derived from LiDAR data

LAS files downloaded from the open source domain were inclusive of only elevation val-
ues devoid of any categorization. Classification of the points into different features like
water, ground, vegetation, building, etc. needed the point cloud to be filtered beforehand
because removal of ground points and other noise points is essential to carefully extract
the returns coming from buildings i.e. the LiDAR signals received from buildings only.
The parameters were judged after previewing the results multiple times and finally those
values were fed as inputs which exhibited finer results. The building footprints acquired
using the methodology discussed in Section 2.1.1, were further classified into three
groups (Figure 8) based on their heights – high-rise building with heights greater than
180 ft (15 stories and above); mid-rise building with heights from 96 to 180 ft (9–15 sto-
ries) and low-rise buildings that were lesser than 96 ft (8 stories and below).

For 3D visualization, LAS files were draped upon high-resolution aerial pho-
tographs for Atlantic City shown in Figure 9. Also, footprint shapefiles exported from
LiDAR data-set were viewed and extruded in ArcScene showing clearly defined build-
ing edges (Figure 10).

3.2. Building footprints extracted from OOC and image segmentation

Segmentation of the images on the basis of scale and colour was performed. Numerous
objects were created appearing as broken segments (Figure 5(B)), which had to be
subsequently grouped together and merged to form one class. The use of optimal box
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Figure 8. Map showing building heights in different categories derived from LiDAR point
clouds.

Figure 7. Methodology for the study.
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classifier was done wherein samples of positive (buildings) and negative class
(non-buildings) had to be fed, as explained in Section 2.1.2. The result of this classi-
fication can be clearly seen in Figure 5(C). Here the positive class i.e. buildings are
depicted in red and negative class i.e. non-buildings are shown in green. This is an
automated process and works well if an accurate sample is fed. Since the focus was
only on extracting building objects, all segments of buildings class were grouped
together. These segments were eventually exported and area calculations were done for
validating results.

Figure 9. A preview window showing aerial photograph draped on LiDAR data.
Note: Area in white box on the left image is represented on the right.

Figure 10. 3D depiction of the building structures derived from LiDAR data in ArcScene 10.1.
Buildings are shown as high-rise (red – 180 ft and above), mid-rise (yellow – 180–96 ft) and
low-rise (green – 96 ft and below).
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3.3. Building footprints extracted from DSMs

Rasterization of points is a conversion of vector point shapefiles into raster surfaces on
the basis of a given input value. In this case, elevation values i.e. Z value of the LAS
points were given as an input and raster surfaces were generated with the cell
resolution of 5 ft (1.5 m). The LAS points were roughly spaced at 1–10 ft (0.3–3 m)
(horizontal spacing between points) and thereby 5 ft pixel resolution was chosen as an
average value of the input file spacing.

Since these raster surfaces depict values in terms of elevation not only for the ter-
rain of the area but also for the overlying structures, the output so attained was a DSM
and not a DTM/DEM, which are surfaces representing only the earth surface elevation.
The classes belonging to buildings were subsequently converted to polygons and calcu-
lation of area was done. The accuracy of the DSM derived was inspected on a 3D plat-
form using ArcScene 10.1. In Figure 11, an area of Atlantic City has been represented
as a TIN. This approach was quite successful in capturing the outer structure of the
buildings and exhibits a good methodology to derive TIN surfaces from LiDAR point
clouds.

4. Discussion

4.1. Comparison of automated building footprints and manually digitized footprints

4.1.1. Commission and omission error assessment

Every footprint in the sample data-set of 200+ polygons was compared with the corre-
sponding calculated building area by measuring the percentage of commission and
omission (Table 2). From the results, it was concluded that OOC derived footprints
exhibited the least commission error, while the results of DSM showed lowest omission
error. The commission errors can be attributed to the inclusion of certain other objects
under buildings’ class, for instance large size vehicles and sometimes closely spaced
buildings get identified as one singular block, thereby increasing the total area. Omis-
sion errors may have been induced due to shadows created by high-rise buildings,
omitting the adjacent buildings and trees covering certain parts of the roofs in the case
of single/double-storied buildings. Since a single technique did not exhibit the lowest

Figure 11. TIN surface generated from DSM for Atlantic City.
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commission and omission error values together, it was sought best to also check the
statistical dependence of the derived data-sets on the actual footprints.

4.1.2. Regression and correlation assessment

All the three approaches showed high regression values indicating that the areas
derived by each method fitted closely to the ground reality (Table 3). As can be seen
graphically in Figure 12(a)–(c), results of OOC method show strongest positive correla-
tion between derived area and actual area as compared to the other methods.

The evaluation of methods was done based on error of omission and commission as
well as a correlation was also studied between manually digitized polygons and foot-
prints derived using the above mentioned three methods. In LiDAR-based footprint
detection, while 82% of building areas were completely detected, resulting in an 18%
omission error, 67% of detected areas were correct, offering a 33.18% of commission
error. Similarly for DSM-based footprint extraction we observed that 86% of the build-
ings were correctly detected with a commission error of 34% i.e. only 66% footprints
detected were correct. However, OOC-based method was almost close to LiDAR
derived footprints with 82% of buildings detected however 75% of the buildings were
being classified correctly i.e. with a commission error of 25%. Since the commission
error was larger than the omission error, the false positive rate of the proposed tech-
nique is greater than its false negative rate. This large error is mainly due to the fact
that majority of residential buildings are small and LiDAR data alone is not able to
capture the boundaries of the buildings properly. In OOC-based method, 92% of the
buildings were correctly classified whereas the accuracy in LiDAR and DSM-based
method ranged from 86 to 72% respectively as per its correlation values and it was also
observed that the adjusted R2 values are much higher for OOC-based method i.e. 0.86
whereas the adjusted R2 values for LiDAR and DSM derived method were only 0.74
and 0.52 (Figure 13(a)–(c)).

In the current study, the primary aim was to derive footprints with least error for
which OOC was seen to be a more appropriate technique. Most of the buildings in the
study area displayed regular patterns and thereby, this technique followed suit and
matched best with actual data. Problem of shadows and trees can also be dealt with
because shadows are often extremely contrasting in terms of colour/tone as compared

Table 2. Commission and omission percentages of the three data-sets compared with actual
buildings.

Technique Commission percentage (%) Omission percentage (%)

LiDAR 33.18 18.37
OOC 24.70 17.64
DSM 34.32 14.19

Table 3. REG and COR values between different techniques and digitized polygons shown from
high to low.

Variables compared R2 value R2 (adj) value COR value

Digitized and LiDAR-based polygons 0.74 0.74 0.86
Digitized and OOC-based polygons 0.86 0.86 0.92
Digitized and DSM-based polygons 0.53 0.52 0.72
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Figure 12. (a) Scatterplot of LiDAR derived area vs. digitized area (square feet); (b) scatterplot
of OOC derived area vs. digitized area (square feet); (c) scatterplot of DSM derived area vs.
digitized area (square feet).
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to adjacent pixels thereby making them easy to classify, and trees because of their
inherent shape/canopy characteristics can be differentiated from others. Even so, the
limitation with OOC is that appropriate values of shape and colour have to be used in
order to optimally classify any region. No fixed values can promise global application
and hence, have to be adjusted from area to area. Also, only high-resolution aerial
images can promise good quality segmentation, which are not commonly available.

The third technique – extraction of footprints using DSMs derived from LiDAR
points was a simpler technique to create a 3D surface without dependence on dedicated
LiDAR software. A straightforward interpolation of LiDAR points to create a raster
surface and its subsequent classification can be executed in several GIS software. Its
methodology was simplistic and easier to apply as equated to others however; its final
outputs were lacking in accuracy. For creating surface generalizations for any area, this
method may be adopted, but for precise footprint measurements, corrections like
marked point access discussed by Brédif et al. (2013) would have to be essentially
applied.

5. Conclusion

The study shows that building footprint extraction using – classification of LiDAR
point cloud data; OOC on aerial photographs; and classification of LiDAR data-based

Figure 13. (a) Correlation between LiDAR derived area and digitized area (square feet);
(b) correlation between OOC derived area and digitized area (square feet); (c) correlation
between DSM derived area and digitized area (square feet).
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DSMs. Footprint extraction was possible with all the methods, but qualitative and
quantitative results proved that OOC is a better method. It can be concluded that all
three approaches are efficient for capturing building footprint and can be applied to any
region, although, results may vary as per heterogeneity in shape and geometry. With
slight modifications to the parameters used – for filtering, classification or segmenta-
tion, these methods would perform well for footprint capturing. Observing the compara-
tive results, it was concluded that OOC performed better than others. It must be
however also understood that all techniques pose certain advantages over others. With
a prior knowledge of the parameters involved for classification, building footprint cap-
turing from LiDAR data demonstrates to be an efficient technique. Also, for 3D depic-
tion of structures, LiDAR has several advantages over other data sources. However,
acquiring accurate footprints for complicated building structures sometimes pose an
issue because every building may not be evenly covered by LiDAR beams and tall
buildings may overshadow the coverage of lower structures.
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