
Algorithms for GIS

Visibility on terrains

Laura Toma

Bowdoin College

Points u,v are visible if segment uv does not intersect the terrain

uv is called line-of-sight (LOS)

Visibility on terrains

• What can one see from a given point (on a terrain)?
• What is the point with largest/smallest visibility?
• How to place an ugly pipe in a scenic area?
• How to place a scenic highway?
• What is the cumulative visible area from a set of viewpoints?
• Find a set of tower locations that “covers” the terrain
• …

What can one see from a given point on a terrain?

• Terrain model T + viewpoint v
• Compute the viewshed of v: the set of points in T visible from v

Sierra Nevada, 30m resolution

What can one see from a given point on a terrain?

• Grid terrains
• discrete view shed
• compute which grid points are visible/invisible
• viewshed is a grid

• TIN terrains
• continuous viewshed
• compute the exact shape of the viewshed

Problem: Given terrain model T + viewpoint v, compute the viewshed of v
(the set of points in T visible from v)

Viewsheds on grid terrains

Sierra Nevada, 30m resolution

from: http://arxiv.org/pdf/1309.4323.pdf

http://arxiv.org/pdf/1309.4323.pdf

Basic viewshed algorithm

Basic viewshed algorithm

To determine if a point is visible from v:

1. Find the 2D intersections between LOS and the grid lines

2. Lift to 3D: find the height of p by linear interpolation

3. Check if verticalAngle(vp’) is below verticalAngle (LOS)

a
y1

y2

y3

y1 = d1 tan a
y2 = d2 tan a

d1
d2 d3

Basic viewshed algorithm

To determine if a point is visible from v:

1. Find the 2D intersections between LOS and the grid lines

2. Lift to 3D: find the height of p by linear interpolation

3. Check if verticalAngle(vp’) is below verticalAngle (LOS)

(r,c)

(r-1,c)
p

p’

Basic viewshed algorithm

To determine if a point is visible from v:

1. Find the 2D intersections between LOS and the grid lines

2. Lift to 3D: find the height of p by linear interpolation

3. Check if verticalAnglev(p) is below verticalAnglev(b)

b

v

p

LOS

tan (verticalAnglev(b)) = (hb - hv) / d(v,b)

v bp

LOS

Viewshed on grids

• The straightforward algorithm
• O(n n)
• uses linear interpolation

• Can we do better (faster)?
• without introducing any approximation

• Van Kreveld[vK’96] algorithm
• O (n lg n)
• uses nearest neighbor interpolation

Grid of n points:
n x n

Linear vs. nearest neighbor interpolation

Van Kreveld’s radial sweep viewshed algorithm
[vK’96]

1. Compute the intersection of los with the grid
2. Compute their vertical angles

v b

LOS

Vertical angle of b with respect to v

How b appears from v: atan (hb - hv) / d(v,b)

1. Compute the intersection of los with the grid
2. Compute their vertical angles

But.. a straightforward implementation leads to O(n) per point

Do we need to compute the O(n) intersection points
and their vertical angles from scratch for every point?

Getting below O(n) per point

Van Kreveld’s O(n lg n) viewshed algorithm

• Idea 1: The line-of-sight to two nearby points share a lot of the
same information. Re-use.

• instead of computing visibility of points in row-column
order, compute in radial order

• Idea 2: Assume that the vertical angle for a cell is the same
throughout the cell
• i.e. nearest neighbor interpolation instead of linear

a

p

Assume that the vertical angle for a cell is the same throughout the cell
atan (h(r,c - hv) / d((r,c),v)

a

p

Assume that the vertical angle for a cell is the same throughout the cell
atan (h(r,c - hv) / d((r,c),v)

Idea: Two nearby points intersect a lot of the same cells

new

old

common

new

old

common

We are going to compute visibility of points in radial order around v

• for i = 0; i< rows; i++
• for j=0; j< cols; j++

• find if (i,j) is visible from v

Viewshed in row-column order

• sort points (i,j) by radial angle of (i,j)
• for each point (i,j) in order:

• find if (i,j) is visible from v

Viewshed in radial order

• sort points (i,j) by radial angle of (i,j)
• for each point (i,j) in order:

• find if (i,j) is visible from v

Viewshed in radial order

Some of the cells that intersected the previous
point will also intersect the current point; re-use
them HOW???

• Radial sweep
• rotate a ray radially around v
• respond to “interesting” events

• What are the events?
• when ray hits a grid point (i,j): determine if (i,j) is visible

• Framing as moving the ray around v allows to express the cells that intersect the
ray in terms of their radial angle

a1 a2

• Ray hits a1: cell alive
• Ray hits a2: cell dies
• Ray between a1 and a2: cell intersects ray

dead

alive

• Radial sweep
• rotate a ray radially around v
• respond to “interesting” events

• What are the events?
• when ray hits a grid point (i,j): determine if (i,j) is visible
• when ray hits ENTER(i,j): cell (i,j) becomes active
• when ray hits EXIT(i,j): cell (i,j) becomes inactive

everything that happens in between ENTER(i,j) and EXIT(i,j): cell (i,j) will be active

• For each point (i,j): compute its ENTER, CENTER, EXIT events
• Sort all events by radial angle wrt v
• initialize AS to contain all cells that are active at angle=0
• For next event (r,c, type) in radial order

• if type is ENTER: //cell becomes active
• insert cell(r,c) in AS

• if event is EXIT: //cell stops being active
• delete cell(r,c) from AS

• if event is CENTER:
//CLAIM: all cells that intersect the los from v to (r,c) must be in the AS
• use AS to find maximum verticalAngle of all cells between v and

cell(r,c)
• if this angle is below verticalAngle(r,c) then (r,c) is visible; otherwise

(r,c) is invisible

Van Kreveld’s radial sweep algorithm
(r,c,CENTER

(r+.5,c+.5, ENTER)

(r-.5,c-.5, EXIT)

The 3 events corresponding to each cell

For an arbitrary position of the ray, all cells that it intersects will be in AS

For an arbitrary position of the ray, all cells that it intersects will be in AS

• What’s a good data structure for the AS?
• Needs to be able to insert and delete cell
• Find vertical angles of all active cells between v and given (r,c)

Analysis

For an arbitrary position of the ray, all cells that it intersects will be in AS

When process CENTER(r,c): , all cells that intersect ray will be in AS

When process CENTER(r,c): , all cells that intersect ray will be in AS

Want only the cells that are in between v and (r,c)

Computing viewsheds

• Straightforward algorithm
• O(n n)
• Uses linear interpolation
• Can be adapted to other interpolations

• Radial sweep approach
• O(n lg n)
• Uses nearest neighbor interpolation
• Not easy to adapt: crucially exploits that cells are “flat”
• Nearest neighbor produces some artifacts

• NEXT: Concentric sweep and horizons

Grid of n points:
n x n

test grid: hemisphere viewshed with NN interpolation viewshed with linear
interpolation

Viewsheds and horizons

Ingredient 1: concentric sweep

Ingredient 2: horizons

 Concentric sweep

 Concentric sweep

L1

 Concentric sweep

L2

 Concentric sweep

L3

 Concentric sweep

Horizons

• Merriam Webster:
• the line where the terrain and the sky seem to meet

Horizons

• Merriam Webster:
• the line where the terrain and the sky seem to meet

Hv : [0, 2PI) ——> R

Hv(a) : horizon (with respect to v) in direction a
• cut the terrain with a vertical plane through ray from v of azimuth a
• Hv(a) is the maximum vertical angle (zenith) of all points intersected by this

plane (all the points on T whose projection on the xy-plane has azimuth a)

Horizon

v

z
v x

y

a

v

Hv : [0, 2PI) ——> R

Hv(a) : horizon (with respect to v) in direction a
• cut the terrain with a vertical plane through ray from v of azimuth a
• Hv(a) is the maximum vertical angle (zenith) of all points intersected by this

plane (all the points on T whose projection on the xy-plane has azimuth a)

Horizon

v

z
v x

y

a

v
b

Hv(a) = b

Hv : [0, 2PI) ——> R

Hv(a) : horizon (with respect to v) in direction a
• cut the terrain with a vertical plane through a ray from v of azimuth a
• Hv(a) is the maximum vertical angle (zenith) of all points intersected by this

plane (all the points on T whose projection on the xy-plane has azimuth a)

Horizon

v

z
v x

y

a

v
b

Hv(a) = b

This point appears on the skyline

Beyond here, a point is visible if and
only if it is above the horizon

A point is visible if it is above the horizon.
Idea: compute horizons.

vertical slope (zenith)

0 PI/4 PI/2 PI 2PI

L1
H1

Viewshed and horizons

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

L2

H2

Viewshed and horizons

H1

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

L2

H1

H2

Viewshed and horizons

vertical slope (zenith)

c PI/4 PI/2 PI 2PI

H1 H2

L2

L1 H12 =

Viewshed and horizons

Viewshed and horizons

H12

L2

L1

Viewshed and horizons

We walk along L3, computing the horizon of L3 and determining if points on L3 are visible or not

L3

H12

L3p

a

p is visible if
slope(vp) < H12(a)

Is point p in L3 visible ?

a

Viewshed and horizons

H12

• Elegant techniques that can be extended
• Linear interpolation or nearest neighbor,…
• Starting point for triangulated terrains

• Worst-case bounds not great
• fast in practice because horizons stay very small

Viewshed and horizons

Viewsheds on triangulated terrains

• Several algorithms are known
• Based on horizons

• Idea: traverse triangles in order of increasing distance form viewpoint,
and update horizon.

• Bootstrap with divide and conquer

Viewsheds on triangulated terrains

Viewsheds on triangulated terrains

• viewshed(p) contains all points of the terrain that are visible from p

from: http://arxiv.org/pdf/1309.4323.pdf

http://arxiv.org/pdf/1309.4323.pdf

Viewsheds on triangulated terrains

• viewshed(p) contains all points of the terrain that are visible from p

• viewshed(p) may intersect a triangle multiple times.
• How big can it be?

• Space complexity = number of edges on boundary of viewshed(p)
• It is known that the complexity of a viewshed on a triangulated terrain can

be O(n2). On a triangulated grid, the complexity of a viewshed is O(n n)
• Contrived. In practice view shed are small. Proving realistic upper bounds

still open problem.

from: http://arxiv.org/pdf/1309.4323.pdf

http://arxiv.org/pdf/1309.4323.pdf

from: HH, MdB, KT 2009

Extending viewsheds

• Cumulative viewshed
• Total viewshed
• Find point of maximum/minimum visibility
• Find optimal paths

Extending viewsheds

• Cumulative viewshed
• Given a set of viewpoints, compute their joint visibility

Total viewshed

• Input: elevation grid G
• Output: TV grid

• TV(i,j) = nb. visible points in viewshed(i,j)

• Algorithm?
• Running time?

total viewshed on kaweah (1M points)
time: 42.6 hrs

Summary
• Viewshed

• Straightforward solution
• Reasonably fast even for very large terrains (as long as they fit in

memory)
• Refined solutions expose elegant ideas

• Radial sweep + augmented RB-trees
• Horizons
• Carry on to triangulated terrains

• Accuracy
• Interpolation is important

• Total viewshed
• Straightforward solution: O(n2 n)
• Refined: O(n2 lg n)
• Too slow…

Need approximate viewsheds!
Need parallel algorithms!

