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Data Sources: satellite imagery

The resolution of satellite images varies depending on the instrument 
used and the altitude of the satellite's orbit. For example, the Landsat 
archive offers repeated imagery at 30 meter resolution for the planet, 
but most of it has not been processed from the raw data. Landsat 7 
has an average return period of 16 days. For many smaller areas, 
images with resolution as high as 41 cm can be available.[5]

Satellite imagery is sometimes supplemented with aerial 
photography, which has higher resolution, but is more expensive per 
square meter. Satellite imagery can be combined with vector or raster 
data in a GIS provided that the imagery has been spatially rectified 
so that it will properly align with other data sets.

Example of imaging satellites  
• GeoEye

• launched September 6, 2008
• has the highest resolution imaging system and is able to collect images with a ground 

resolution of 0.41 meters (16 inches) in the black and white mode. It collects multispectral or 
color imagery at 1.65-meter resolution or about 64 inches.

• ASTER (Advanced Space-borne Thermal Emission and Reflection Radiometer)
• on board NASA’s satellite Terra, (which is part of NASA’s EOS)

https://en.wikipedia.org/wiki/Image_resolution
https://en.wikipedia.org/wiki/Landsat
https://en.wikipedia.org/wiki/Landsat_7
https://en.wikipedia.org/wiki/Aerial_photography
https://en.wikipedia.org/wiki/Geographic_information_system


satellite imagery

photogrammetry 
altimetry 
SAR interpherometry 
…

terrain topography

ocean topography 
(bathymetry)

E.g. DEM generation from satellite data :    http://www.earsel.org/tutorials/Jac_03DEMGhent_red.pdf

http://www.earsel.org/tutorials/Jac_03DEMGhent_red.pdf


Data Sources: satellite imagery



Data Sources: LIDAR point clouds



satellite imagery

LIDAR point cloud

surface model

• point cloud to grid  
• point cloud to TIN 
• grid to TIN 



Terrain simplification

A terrain model is obtained from  
• A set  P = { (x1, y1, z1), (x2, y2, z2), ……, (xn, yn, zn) }  of terrain elevation samples 

• P could be a grid or a point cloud 
• sometimes called a “height field” (in graphics and vision) 

• An interpolation method 

Let Surf(P) denote the surface corresponding to P

P

n points



Terrain simplification

P

n points

P’

m points

dist(Surf(P}, Surf(P’)) < epsilon

Simplification 

•  Given a set P and an error threshold epsilon,  find a subset P’ of P such that 
surf(P’)  approximates Surf(P) within the desired error threshold



Outline

• Grid-to-TIN 
• We’ll focus on grid-to-TIN simplification  
• The methods can be extended to deal with arbitrary (non-grid) data  

• Point-cloud-to-TIN 
• e.g. LAStools las2tin 

• Point-cloud-to-grid  
• e.g. LAStools las2grid 



Grid to TIN



Motivation

• Grids  
• uniform resolution means a lot of data redundancy  
• grids get very large very fast 

• Example:    
• Area if approx. 800 km x 800 km 
• Sampled at: 

• 100 resolution:  64 million points   (128MB)
• 30m resolution:  640                       (1.2GB) 
• 10m resolution:  6400 = 6.4 billion (12GB) 
• 1m resolution:  600.4 billion            (1.2TB)



Grid-to-TIN simplification 

• Multi-pass refinement methods 
• start with an initial approximation  and add points one by one  
•  greedy insertion  (e.g. Garland & Heckbert) 

• Other:  
• Multi-pass decimation methods 

• start with P and discard points (one by one) 
• E.g.: Lee’s drop heuristic 

• One-pass methods  
• pre-compute importance of points  
• select points that are considered important features and triangulate 

them 
• based on quad trees or kd-trees



Refinement: Greedy insertion
• Notation:  

• P = set of grid points 
• P’ = set of points in the TIN   
• TIN(P’): the TIN on P’

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p) 
• select point p with largest error(p) 
• insert p in P’ , delete p from P, and  update TIN(P’) 

DONE() :: return  (max error below given epsilon) ? TRUE; FALSE; 



Greedy insertion

• Come up with a straightforward implementation of the generic greedy 
insertion and analyze its running time.  

• Assume straightforward triangulation:  
• when inserting a point in a triangle,  split the triangle in 3



Greedy insertion
     | P |                      | P’ | 

     n                     4 => O(1) 

iteration 1   n-1    1 + O(1)  

iteration 2   n-2                       2 + O(1)  

     .                           . 

     .                           . 

iteration k    n-k                       k

    

at the end    n-m                       m

• Note:  
• m = nb of vertices in the simplified TIN at the end  (when error of P’ falls below epsilon) 
• usually m is a fraction of n (e.g. 5%)



Greedy insertion— VERSION 1

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with 4 corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p)  
• select point p with largest error(p) 
• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles

find triangle that contains p and compute the vertical difference in height 
between p and its interpolation on the triangle



Greedy insertion— VERSION 1

ANALYSIS:   At iteration k:  we have O(n-k) points in P, O(k) points in P’ 
• RE-CALCULATION  

• compute the error of a point:  must search through all triangles to see which one contains it  
==> worst case O(k) 

• compute errors of all points ==> O(n-k) x O(k) 

• SELECTION:  select point with largest error: O(n-k)  

• INSERTION: insert p in P’, update TIN  ==> O(1)  
• unless each point stores the triangle that contains it, need to find the triangle that contains p 
• for a straightforward triangulation: split the triangle that contains p into 3 triangles ==> O(1) 

time

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• for each point p in P, compute error(p)  

• select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles

RE-CALCULATION
SELECTION
INSERTION



Greedy insertion— VERSION 1

Analysis worst case:   
• iteration k:   O((n-k) x k)  + O(n-k) + O(1) 

• overall: SUM { (n-k) x k } = …= O(m2n) 

• Note: dominant cost is re-calculation of errors  (which includes point location)  

• More on point location:  
• to locate the triangle that contains a given point, we “walk” (traverse) the TIN from triangle  

to triangle, starting from a triangle on the boundary  (aka DFS on the triangle graph).  
• we must be very unlucky to always take O(k)  
• simple trick:  start walking the TIN from the triangle that contained the previous point.  

• because points in the grid are spatially adjacent, most of the time a point will fall in the 
same triangle as the previous point or in one adjacent to it 

• average time for point location will be O(1) 

RE-CALC SELECT INSERT



Greedy insertion— VERSION 1

Worst-case:  O(m2n) 
• iteration k:   O(n-k) x O(k)  +  O(n-k)   +    O(1) 

• overall: SUM  {O(n-k) x k} = O(m2n)  

Average case:  O(mn) 
• trick to speed up point location ==> average time for pt location will be O(1)  
• iteration k:  O(n-k) x O(1)  + O(n-k)      + O(1) 

• SUM  {O(n-k)} = O(mn) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT

INSERT



Greedy insertion— VERSION 2

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• for each point p in P, compute error(p)  

• select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• create 3 new triangles 

• for all points in triangle that contains p: 

•  find the new triangles where they belong, re-compute their errors  

Observation: Only the points that fall inside triangles that have changed need to re-compute their error.  

• Re-compute errors ONLY for points whose errors have changed 
• Each point p in P stores its error, error(p) 
• Each triangle stores a list of points inside it 



Greedy insertion— VERSION 2

Worst-case:  O(mn) 
• iteration k:             -        +  O(n-k)  +  O(1)  + O(n-k) x O(1) 

• overall: SUM  {O(n-k) } = O(mn)  

Average case:  O(mn) 
• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 

triangle 
• iteration k:           -       +    O(n-k) + O(1) + O((n-k)/k) x O(1) 

• SUM  {O(n-k)  + O((n-k)/k} = O(mn) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

SELECTION will be dominant!



Greedy insertion— VERSION3

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• use heap  to select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• for all points in the triangle that contains p:  

•  find the new triangles where they belong, re-compute their errors  

• update new errors in heap

• Version2, re-calculation goes down and selection becomes dominant  

• Version 3:  improve selection  
• store a heap of errors of all points in P



Greedy insertion— VERSION 3

Worst-case:  O(mn lg n) 
• iteration k:             -       + O(lg (n-k))  +  O(1)  + O(n-k) x O(lg (n-k)) 

• overall: SUM  {(n-k) lg (n-k)} = O(mn lg n)  

Average case:  O((m+n) lg2 n) 
• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 

triangle 
• iteration k:           -       +   O(lg (n-k)) + O(1) + O((n-k)/k) x O(lg (n-k)) 

• SUM  {lg (n-k)  + O((n-k)/k} = O((m+n) lg2 n) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc

heap updates will be  dominant!



Greedy insertion— VERSION 4

• Version 3:   selection is down, but updating the heap is now dominant  

• Version 4:  store in heap only one point per triangle (point of largest error) 

Algorithm: 

• P = {all grid points}, P’ = {4 corner points} 

• Initialize TIN to  two triangles with 4 corners as vertices 

• while not DONE() do  

• use heap  to select point p with largest error(p) 

• insert p in P’, delete p from P  and  update TIN(P’) 

• for all points in the triangle that contains p:  

•  find the new triangles where they belong, re-compute their errors 

• find point with largest error per triangle   

• add these points (one per triangle) to the heap



Greedy insertion— VERSION 4

Worst-case:  O(mn) 
• iteration k:             -       + O(lg k)  +  O(1)  + O(n-k)xO(1) + O(1) x O(lg k) 

• overall: SUM  {lg k + O(n-k) } = O(mn)  

Average case:  O((m+n) lg n) 
• if points are uniformly distributed in the triangles ==> O((n-k)/k)  points  per 

triangle 
• iteration k:      -       +   O(lg k) +   O(1) + O((n-k)/k)x O(1) + O(1) x O(lg k) 

• SUM  {lg k  + O((n-k)/k} = O((m+n) lg n) 

RE-CALC

RE-CALC

SELECT

SELECT

INSERT + re-calc

INSERT + re-calc



• The straightforward way to triangulate when adding new points runs in O(1) 
time but will create  long and skinny triangles 

Triangulations
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• The straightforward way to triangulate when adding new points runs in O(1) 
time but will create long and skinny triangles  

• Small angles cause troubles!

Triangulations



• The straightforward way to triangulate when adding new points runs in O(1) 
time but will create long and skinny triangles  

• Small angles cause troubles! 
• Good meshes have uniform triangles and angles that are neither too small 

nor too large 

Triangulations



Point-cloud-to-TIN ?

http://doc.cgal.org/latest/Surface_mesh_simplification/Illustration-Simplification-ALL.jpg

http://doc.cgal.org/latest/Surface_mesh_simplification/Illustration-Simplification-ALL.jpg


Triangulation



Triangulation

• A triangulation of a point set P  in 2D is a triangulation of the convex hull of P



Triangulation

• A triangulation of a point set P  in 2D is a triangulation of the convex hull of P



Triangulation

• A triangulation of a point set P  in 2D is a triangulation of the convex hull of P



Triangulation

• Many ways to triangulate a set of points P



Triangulation

• Many ways to triangulate a set of points P 
• Different ways to evaluate a triangulation  

• minimum angle 
• maximum degree 
• sum of edge lengths  
• … 

• Algorithms for various kinds of optimal triangulations are known. 

• A triangulation that maximizes the minimum angle across all triangles is 
called the Delaunay triangulation and can be computed in O( n lg n) time. 



Greedy insertion with Delaunay triangulation

Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p) 
• select point p with largest error(p) 
• insert p in P’ , delete p from P, and  update TIN(P’) 

maintain TIN as a Delaunay triangulation of P’



Brainstorming: Point-cloud-to-TIN ?



grid (raster)

TIN

Brainstorming: Point-cloud-to-TIN ?



Algorithm: 
• P = {all grid points}, P’ = {4 corner points} 
• Initialize TIN to  two triangles with corners as vertices 
• while not DONE() do  

• for each point p in P, compute error(p) 
• select point p with largest error(p) 
• insert p in P’, delete p from P, and update TIN(P’) 

What needs to change?

Brainstorming: Point-cloud-to-TIN ?



Brainstorming: Point-cloud-to-grid ?



Brainstorming: Point-cloud-to-grid ?

California Lidar data
http://www.opentopography.org/images/opentopo_images/garlock_slope.jpg

http://www.opentopography.org/images/opentopo_images/garlock_slope.jpg


Brainstorming: Point-cloud-to-grid ?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.
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Brainstorming: Point-cloud-to-grid ?

Given a point-cloud P and a desired grid spacing, compute a grid that represents P.



Brainstorming: Point-cloud-to-grid ?

Sketch an algorithm to  compute a grid given a point cloud and a desired resolution.  Analyze it. 


