
Quadtrees
II

Algorithms for GIS

Laura Toma

Bowdoin College

Applications of quadtrees

Applications of quadtrees

• Hundreds of papers
• Specialized quadtrees

• customized for specific types of data (images, edges, polygons)
• customized for specific applications
• customized for large data

• Used to answer queries on spatial data such as:
• point location
• nearest neighbor (NN)
• k-NNs
• range searching
• find all segments intersecting a given segment
• meshing
• …

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

neighbor of the parent

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=NULL

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

NORTH_Neighbor=?

Example: Neighbor finding

Given a node v and a direction (N, S, E, W) find a node v’ such that region(v’) is
adjacent to region(v) in the given direction.

• two regions (squares) are adjacent iff they share an edge

• try to find a node v’ at the same
depth as v

• if not possible, find the deepest

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

Is the North_neighbor always a sibling or an uncle?

NW SW NE SE

….. …..

Visualizing it on the tree..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest Could be a nephew/niece, but we prefer the sibling..

• try to find a node v’ at the same depth as v
• if not possible, find the deepest

NW SW NE SE

…..
NORTH_Neighbor=?

Visualizing it on the tree..

Come up with an example where the search for a
North_neighbor
is a great-uncle

Come up with an example where the North_neighbor is a

• great-uncle.

• great-great-uncle
• …

Example: Neighbor finding

NW SW NE SE

NW SW NE SE

NW SW NE SE

//input: a node v in a quadtree

//output: the deepest node v’ whose depth is at most the depth of v such that
region(v’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
• if v==root: …
• if v==SW-child of parent(v):…
• if v==SE-child of parent(v): …

 //if we reached here, v must be NW or NE child
• x <—- North_Neighbor(parent(v))

• if x is NULL or a leaf:
• .…

• else:
• …..

Example: Neighbor finding

//input: a node v in a quadtree

//output: the deepest node v’ whose depth is at most the depth of v such that
region(v’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
• if v==root: return NULL
• if v==SW-child of parent(v): return NW-child of parent(v)
• if v==SE-child of parent(v): return NE-child of parent(v)

 //if we reached here, v must be NW or NE child
• x <—- North_Neighbor(parent(v))

• if x is NULL or a leaf: return x
• else:

• if v ==NW-child of parent(v): return SW-child(x)
• else: return SE-child(x)

Example: Neighbor finding

//input: a node v in a quadtree

//output: the deepest node v’ whose depth is at most the depth of v such that
region(v’) is a north-neighbor of region(v), and NULL if there is no such node

North_Neighbor(v)
• if v==root: return NULL
• if v==SW-child of parent(v): return NW-child of parent(v)
• if v==SE-child of parent(v): return NE-child of parent(v)

 //if we reached here, v must be NW or NE child
• x <—- North_Neighbor(parent(v))

• if x is NULL or a leaf: return x
• else:

• if v ==NW-child of parent(v): return SW-child(x)
• else: return SE-child(x)

Example: Neighbor finding

give an example that would trigger
 several recursive calls

More applications

• Used to answer queries on spatial data such as:
• point location
• nearest neighbor (NN)
• k-NNs
• range searching
• find all segments intersecting a given segment
• meshing
• …

How would you
do these?

NN=?

NN=?

find all points in this range

find all points in this range

Applications

• Image analysis/compression

Applications

• Used for fast rendering (LOD)
• Store data at various levels of detail, using a quadtree

• Bottom level has full resolution, level above it has lower resolution, and so on
• This can be done so that the total amount of data stored is still O(n) (that is, no blowup due to storing multiple levels)

• Render scene at a resolution dependent on its distance from the viewpoint
• when rendering an object, select the appropriate level based on its distance from viewpoint

