Algorithms for GIS

Quadtrees

I

Laura Toma
Bowdoin College

Quadtree

- A data structure that corresponds to a hierarchical subdivision of the plane
- Start with a square (containing inside input data)
- Divide into 4 equal squares (quadrants)
- Continue subdividing each quadrant recursively
- Subdivide a square until it satisfies a stopping condition, usually that a quadrant is "small" enough
- for e.g. contains at most 1 point

Quadtrees

- Conceptually simple
- Generalizes to >2 dimensions
- $d=3$: octree
- Can be built for many types of data

- points, edges, polygons, images, etc
- Can be used for many different tasks
- search, point location, neighbors, etc
- dynamic
- Theoretical bounds not great, but widely used in practice
- LOTS of applications
- Many variants of quadtrees have been proposed
- Hundreds of papers

Point-quadtree

Point quadtree

Problem: Store P in a quadtree such that every square has $<=1$ point.

Questions:

1. Size? Height?
2. How to build it and how fast?
3. What can we do with it?

$$
\text { Let } P=\text { set of } n \text { points in the plane }
$$

Let $\mathrm{P}=$ set of n points in the plane

Let $P=$ set of n points in the plane

Let $\mathrm{P}=$ set of n points in the plane

Let $\mathrm{P}=$ set of n points in the plane

Let $\mathrm{P}=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Let $P=$ set of n points in the plane

Quadtree: tree corresponding to the subdivision

Exercises

- Pick $\mathrm{n}=10$ points in the plane and draw their quadtree.
- Show a set of (10) points that have a balanced quadtree.
- Show a set of (10) points that have an unbalanced quadtree.
- Draw the quadtree corresponding to a regular grid
- how many nodes does it have?
- how many leaves? height?
- Consider a set of points with a uniform distribution. What can you say about the quadtree ?
- Let's look at sets of 2 points in the plane.
- Sketch the smallest possible quad tree for two points in the plane.
- Sketch the largest possible quad tree for two points in the plane.
- An upper bound for the height of a quadtree for 2 points ????
- What can you say about all points at the same level in the quadtree?

Theorem:

The height of a quadtree storing P is at most $\lg (s / d)+3 / 2$, where s is the side of the original square and d is the distance between the closest pair of points in P.

Proof:

- Each level divides the side of the quadrant into two. After i levels, the side of the quadrant is $\mathrm{s} / 2^{i}$
- A quadrant will be split as long as the two closest points will fit inside it.
- In the worst case the closest points will fit diagonally in a quadrant and the "last" split will happen at depth i such that s sqrt(2)/2 $=\mathrm{d}$
- The height of the tree is $i+1$
- What does this mean?
- The distance between points can be arbitrarily small, so the height of a quadtree can be arbitrarily large in the worst case

Building a quadtree

- Let's come up with a (recursive) algorithm to build quadtree of P
//create quadtree of P and return its root
buildQuadtree(set of points P, square S)

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node , store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)
- node ->child4 = buildQuadtree(P4, S4)
- return node

Building a quadtree

//create quadtree of P and return its root

buildQuadtree(set of points P, square S)

- if P has at most one point:
- build a leaf node, store P in it, and return node
- else
- partition S into 4 quadrants S1, S2, S3, S4 and use them to partition P into P1, P2, P3, P4
- create a node
- node ->child1 = buildQuadtree(P1, S1)
- node ->child2 = buildQuadtree(P2, S2)
- node ->child3 = buildQuadtree(P3, S3)
- \quad node ->child4 = buildQuadtree(P4, S4)
- return node

Analysis

- The logic
- Total time $=$ total time to partition + total time in recursion
- We'll show that
- Partition: $O(n \times h)$
- Recursion: $\mathrm{O}(\mathrm{n} \times \mathrm{h})$

Theorem:
A quadtree for a set P of points in the plane can be built in $O(n \times h)$ time.

Partitioning

Recursion

Let $P=$ set of n points in the plane

A quadtree for P of height h

- Every recursive call creates a node
- How many nodes?
- The number of nodes can be unbounded.
- We want to express nb.nodes as function of height h.

Recursion

A quadtree for P of height h

- Every recursive call creates a node
- How many nodes?
- nodes $=$ internal nodes + leaves

$$
N=I+L
$$

- We can find a relation between I and L
- Each internal node has 4 children.
- It can be shown that $L=3 I+1$ (proof by induction)
A quadtree for P of height h

- Every recursive call creates a node
- How many nodes?
- nodes $=$ internal nodes + leaves

$$
N=I+L
$$

- We can find a relation between I and L
- Each internal node has 4 children.
- It can be shown that $L=3 I+1$ (proof by induction)
- It follows that $N=I+L=4 I+1$

Building a quadtree

- How many internal nodes?
- Can be unbounded
- Want to express function of h
- The usual argument does not work
- each leaf contains at most one point
- best case: no empty leaves
- worst case: many empty leaves, many internal nodes
- At each level, each internal node contains at least 2 points
$=>O(n)$ internal nodes per level
$O(n \times h)$ nodes

Summary

Theorem:

A quadtree for a set P of points in the plane:

- has height $h=O(\lg (1 / d))$ (where d is closest distance)
- has $O(h \times n)$ nodes; and
- can be built in $\mathrm{O}(\mathrm{h} \times \mathrm{n})$ time.
- Theoretical worst case:
- height and size are unbounded
- In practice:
- often $h=O(n)==>$ size $=O\left(n^{2}\right)$, build time is $O\left(n^{2}\right)$
- For sets of points that are uniformly distributed, quadtrees have height $h=O(\lg n)$, size $O(n \lg n)$ and can be built in $O(n \lg n)$ time.

Compressed (point) quadtrees

Exercise

- Draw a quadtree of arbitrarily large size corresponding to a small set of points in the plane (pick $n=2$ or $n=3$).
- How many leaves are empty / non-empty?
- Why is the size of the quadtree super-linear?
- Compress the quadtree as follows:
- Compress paths of nodes with 3 empty children into one node
- This node is called a donut
- A node may have 5 children, an empty donut +4 regular quadrants

Compressed quadtrees

- A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)
- A node may have 5 children, an empty donut + 4 regular quadrants

Compressed quadtrees

- A compressed quadtree is a regular quadtree where paths of nodes with 3 empty children are compressed into one node (called: donut)
- A node may have 5 children, an empty donut + 4 regular quadrants
- What does this mean in terms of size?

Theorem: A compressed quadtree has $\mathrm{O}(\mathrm{n})$ nodes and $\mathrm{h}=\mathrm{O}(\mathrm{n})$ height.

- Proof idea: For each leaf that's empty and for each donut, there exists one sibling leaf that's not empty. The number of non-empty leaves is n.

Applications of quadtrees

- Hundreds of papers
- Specialized quadtrees
- customized for specific types of data (images, edges, polygons)
- customized for specific applications
- customized for large data
- Used to answer queries on spatial data such as:
- point location
- nearest neighbor (NN)
- k-NNs
- range searching
- find all segments intersecting a given segment
- meshing

chrisbrough.com/images/quadtree/terrain-angle-low.png

electronicimaging.spiedigitallibrary.org/data/Journals/ELECTIM/22287/501504jei2.jpeg

