Algorithms for GIS

LiDAR data

Laura Toma

Bowdoin College

LiDAR (Light Detection and Ranging)

LiDAR point cloud: { (x,y,z) }

http://potree.org

LiDAR has many uses

- GIS, LiDAR data used to get digital terrain models (grids)
- Medicine: models of tumors
- Robotics: percept and classify environment
- Self driving cars: model space to avoid obstacles

Robot equipped with LiDAR: uses it to construct maps and avoid obstacles

First return, last return

Working with LiDAR data (in GIS)

1. Classify it (ground, buildings, vegetation, noise, ..)

Working with LiDAR data (in GIS)

2. From ground to grid

Working with LiDAR data (in GIS)

A possible pipeline

- Find outliers and correct
- Classify ground
- Find height above ground
- Classify buildings and vegetation

Classified LiDAR data

Convert ground point cloud to DEM

Why LiDAR?

- Very high resolution (.5 m)
- Automatic vegetation and building extraction
- Opens the door to other modeling

Challenges

- Huge point clouds
- Storage issues
- Need efficient algorithms
 - CPU efficient
 - IO-efficient (streaming)
 - cache-efficient
 - parallel
- Algorithms (classification, gridding) not straightforward

