
Flow on terrains
(I)

Algorithms for GIS

Laura Toma

Bowdoin College

Overview

• Flow on grid terrains
• Flow direction
• Flow accumulation
• Flat areas
• Watersheds and watershed hierarchy

• Where does the water go when it rains?
• What will happen when it rains (a lot)?
• What are the areas susceptible to flooding?
• What areas will flood first?
• What parts of the world will go under water when sea level rises by e.g. 10 ft?
• River data is expensive to collect. Is it possible to model and automatically

compute rivers on a terrain?
• What area drains to a point?
• Suppose someone spilled some pollutant)at this point on the terrain—-what

area is contaminated when it rains ?
• … and many more.

Flow on digital terrain models

river network,
watersheds,
flooding,

…..

Big data

• Massive amounts of terrain data available
• e.g. NASA SRTM, acquired 80% of Earth at 30m

resolution. Total 5TB !!
• USGS: most USA at 10m resolution
• LIDAR data: 1m resolution

==> need efficient algorithms!!

• Example:
• Area if approx. 800 km x 800 km
• Sampled at:

• 100 resolution: 64 million points (128MB)
• 30m resolution: 640 (1.2GB)
• 10m resolution: 6400 = 6.4 billion (12GB)
• 1m resolution: 600.4 billion (1.2TB)

Flow on grid terrains

• Modeled by two basic concepts
• Flow direction (FD)

• the direction water flows at a point
• Flow accumulation (FA)

• total amount of water flowing through a point

• Based on this can define
• watersheds, drainage areas, river network, flooding
• (Pfafstteter) river and watershed hierarchy

Flow direction (FD)

• FD(p) = the direction water flows at p
• Generally,

• FD is direction of gradient at p, i.e. direction of greatest decrease
• FD can be approximated based on a neighborhood of p

• FD on grids:
• discretized to eight directions (8 neighbors), multiple of 45o

SFD: Single flow direction

(steepest downslope)

MFD: Multiple flow directions

(all downslope neighbors)

Flow direction

elevation grid FD grid

n = nb. of
cells in the grid

• FD can be computed in O(n) time
• Issue: flat areas… later

point (i,j) in FD grid stores FD(i,j)
values usually coded as

1
248

16
32 64 128

Flow direction
n = nb. of
cells in the grid

Flow accumulation (FA)

• FA(p) = how much water goes through point p

• FA grid:
• Compute, for each cell (point) c, how much

water passes through that cell.
• Assume each cell starts with 1 unit of water
• Assume each cell sends its initial as well as

incoming water to the neighbor cell pointed to
by its FD

Flow accumulation (FA)

• FA(p) = how much water goes through point p

• FA grid:
• Compute, for each point/cell c, how much

water passes through that cell.

elevation grid FD grid FA grid

FD and FA

• Some observations
• FD graph: forest of trees
• each tree represents a separate “river tree”
• points with small FA= ridges
• points with high FA = channels (rivers)
• FA: how many cells are upstream, or size of

subtree of that cell, if viewing the tree upside
down

• FA models rivers!
• set an arbitrary threshold t
• cell c is on a river if FA(c) >= t

Flow accumulation

FA grid draped over elevation grid
FA 2D view

• high values: blue
• medium values: light blue
• low values: yellow

Computing FA: naive algorithms

• Idea 1:
• Scan row-by-row: for each cell add +1 to flow of all cells along its

downstream path

• Idea 2:
• Flow at cell c is the sum of the flows of the neighbors that flow into c
• Use recursion
• Do this for every cell

• Other ideas?

Computing FA: naive algorithms

• Idea 1:
• Scan row-by-row: for each cell add +1 to flow of all cells along its

downstream path
• Analysis??

• Idea 2:
• Flow at cell c is the sum of the flows of the neighbors that flow into c
• Use recursion
• Do this for every cell
• Analysis??

• Other ideas?
• Analysis??

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

worst-case
running time

Theta(n2)

n = nb. of
cells in the grid

thanks!!! to H. Haverkort

//do it for all

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,j);

Computing FA: naive algorithm (2)

//return the flow of cell (i,j)
void compute_flow(i,j) {
 assert(inside_grid(i,j));
 int f = 0; //initial flow at (i,j)
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 f += compute_flow(i+k, j+l);
 }//for k
 }//for l
 return f;
}

//return 1 if cell (a,b) flows into cell (x,y)
// that is, if (a,b)’s FD points towards (x,y)
int flows_into(a,b, x,y) {
 if (!inside_grid(a,b)) return 0;
 …
}

//do it for all

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,j);

Computing FA: naive algorithm (2)

//return the flow of cell (i,j)
void compute_flow(i,j) {
 assert(inside_grid(i,j));
 int f = 0; //initial flow at (i,j)
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 f += compute_flow(i+k, j+l);
 }//for k
 }//for l
 return f;
}

//return 1 if cell (a,b) flows into cell (x,y)
// that is, if (a,b)’s FD points towards (x,y)
int flows_into(a,b, x,y) {
 if (!inside_grid(a,b)) return 0;
 …
}

• Questions:
• What is the worst case running time?

• Is it linear?
• What sort of FD graph would trigger

worst-case?

//do it for all

for (i=0; i<nrows; i++)

for (j=0; j<ncols; j++)

flow[i][j] =compute_flow(i,j);

Computing FA: naive algorithm (2)

//return the flow of cell (i,j)
void compute_flow(i,j) {
 assert(inside_grid(i,j));
 int f = 0; //initial flow at (i,j)
 for (k=-1; k<= 1; k++) {
 for (l=-1; l<= 1; l++) {
 if flows_into(i+k, j+l, i,j)
 f += compute_flow(i+k, j+l);
 }//for k
 }//for l
 return f;
}

//return 1 if cell (a,b) flows into cell (x,y)
// that is, if (a,b)’s FD points towards (x,y)
int flows_into(a,b, x,y) {
 if (!inside_grid(a,b)) return 0;
 …
}

worst-case
running time

Theta(n2)

Flow accumulation: smarter algorithms?

• Ideas?

Flow accumulation: smarter algorithms?

• Use recursion, but once a value flow(i,j) is computed, store it in a table. This
avoids re-computation.

• dynamic programming!

• To completely avoid recursion, compute flow(i,j) in topological order of FD
graph
• topological order can be computed in linear time
• or: sort by height, but that’s O(n lg n)

• Analysis?
• Which one would you chose in practice?

n = nb. of
cells in the grid

