Algorithms for GIS

Flow on terrains

(1)

Laura Toma

Bowdoin College

Overview

 Flow on grid terrains
 Flow direction
 Flow accumulation
 [lat areas

 Watersheds and watershed hierarchy

Where does the water go when it rains?

What will happen when it rains (a lot)?

What are the areas susceptible to flooding?

What areas will flood first?

What parts of the world will go under water when sea level rises by e.g. 10 ft?

River data is expensive to collect. Is it possible to model and automatically
compute rivers on a terrain?

What area drains to a point?

Suppose someone spilled some pollutant)at this point on the terrain—what
area is contaminated when it rains 7

... and many more.

Flow on digital terrain models

river network,
watersheds,
flooding,

Big data

e Massive amounts of terrain data available

 e.9g. NASA SRTM, acquired 80% of Earth at 30m
resolution. Total 5TB !

e USGS: most USA at 10m resolution

e LIDAR data: 1m resolution

==> need efficient algorithms!!

e Example:

 Areaif approx. 800 km x 800 km

e« Sampled at:
e 100 resolution: 64 million points (128MB)
e 30m resolution: 640 (1.2GB)

 10m resolution: 6400 = 6.4 billion (12GB)
 1m resolution: 600.4 billion (1.2TB)

Flow on grid terrains

 Modeled by two basic concepts
 Flow direction (FD)
* the direction water flows at a point
 Flow accumulation (FA)

e total amount of water flowing through a point

e Based on this can define
e watersheds, drainage areas, river network, flooding

e (Pfafstteter) river and watershed hierarchy

Flow direction (FD)

 FD(p) = the direction water flows at p

e Generally,
 FD is direction of gradient at p, i.e. direction of greatest decrease
 FD can be approximated based on a neighborhood of p

e FD on grids:

» discretized to eight directions (8 neighbors), multiple of 450

3 2 4 3.\ E /.4
7 3 8 7 \+/ 8
71 11|9 7|19
SFD: Single flow direction MFD: Multiple flow directions

(steepest downslope) (all downslope neighbors)

Flow direction

o FD can be computed in O(n) time

e |SSUE:

elevation grid

flat areas... |later

FD grid

n = nb. of
cells in the grid

point (i,j) in FD grid stores FD(i,j)
values usually coded as

32| 64 (128
16 1
8|14 |2

n = nb. of
Flow direction cells in the grid

Direction coding

The Cr_)ding Uf the directiun UF Hut‘/

Flow accumulation (FA)

 FA(p) = how much water goes through point p

« FAgrid:

Compute, for each cell (point) ¢, how much
water passes through that cell.

Assume each cell starts with 1 unit of water

Assume each cell sends its initial as well as

iIncoming water to the neighbor cell pointed to
by its FD

e
N
— >
KAnnE
N2 vy 34|V

Flow accumulation (FA)

e FA(p) = how much water goes through point p — Ng NG l

A

e FA grid: ‘ , 7 17,

 Compute, for each point/cell ¢, how much ||] | | | f

water passes through that cell. v v | ¥Y[v |V
elevation grid FD grid FA grid

FD and FA

Some observations

 FD graph: forest of trees

e each tree represents a separate “river tree”
e points with small FA= ridges

e points with high FA = channels (rivers)

 FA: how many cells are upstream, or size of
subtree of that cell, if viewing the tree upside
down

FA models rivers!
e setan arbitrary threshold t

o« cellcisonariverif FA(c) >=t

R

- o

P

Flow accumulation

- ﬁ '\ .~ ; “‘Q::{'\’jp ““:A r 1 5
M N %) S U& 1 :&.)0:- ;'*&:‘f

pus
¥

"

- - F vl
= Sy 3
- e -
£ \ &4

1
si\
3
Sk

N

FA 2D view
* high values: blue
 medium values: light blue
* |ow values: yellow

FA grid draped over elevation grid

Computing FA: naive algorithms

e |dea 1:

e Scan row-by-row: for each cell add +1 to flow of all cells along its
downstream path

e |dea?2:
 Flow at cell cis the sum of the flows of the neighbors that flow into ¢

e Use recursion

e Do this for every cell

e (ther ideas?

Computing FA: naive algorithms

e |dea 1:

e Scan row-by-row: for each cell add +1 to flow of all cells along its
downstream path

* Analysis??

e |dea?2:
 Flow at cell cis the sum of the flows of the neighbors that flow into ¢
e Use recursion
e Do this for every cell

* Analysis??

e (ther ideas?

* Analysis??

Computing FA: naive algorithm (1)

thanks!!! to H. Haverkort

Computing FA: naive algorithm (1)

/‘

- - @ -

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

- -

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 1 2
T i
1 1 1 2
| A
v |
2 2
i
o 2 2
| A
v |
. 2
i
2
| A
7 |

thanks!!!l to H. Haverkort

Computing FA:

naive algorithm (1)

1 1 1 1 1 y)
A i
1 1 1 2
| A
v |
2 2
i
- 2 =D
| i
v |
—= 2 2
i
2
| A
v |

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1

1

1

//

2

N

2
!
11| 1 2
Ry T
2 2
N A
—> 2 —> 2
: K
> 2 2
K
2
' T

A
|

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 1 2 3
A
1 1 1 y)
| A
v |
2 2
i
- 2 2
| A
v |
> 2 2
i

—f N

<1

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 1 2 3
R
1 1 1 2
| A
v |
2 2
r
> 2 > 2
| A
\ |
—> 2 2
1
2
| A
\ |

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1

1 1

DR

2

1

1

1 1

-

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1

1

1

1

N A

2

1

1

-

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1

1 1

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

1 1 1 | 3 | 6
B D e i
2 2 2 5
| A
v |
5 5
i
e 5 > 5
A
\ J
> 5 5
]
5
i]

thanks!!!l to H. Haverkort

Computing FA: naive algorithm (1)

n = nb. of
cells in the grid

1 1 1 1 3 6
A
1 2 2 2 5
| A
v |
5 5
i
- 5 —» 5
| 2
v |
> 5 5
i
5
| A
v |

thanks!!!l to H. Haverkort

worst-case
running time
Theta(n?)

Computing FA: naive algorithm (2)

//return 1 if cell (a,b) flows into cell (x,y)
/[that is, if (a,b)’s FD points towards (X,y)
int flows_into(a,b, x,y) {

if (linside_grid(a,b)) return O;

//do it for all
for (i=0; i<nrows; i++) }
for (j=0; j<ncols; j++) /[return the flow of cell (i,j)

flow[i][j] =compute_flow(i)); void compute_flow(i,j) {

assert(inside_grid(i,j));
intf=0; //initial flow at (i,])

for (k=-1; k<= 1; k++) {
for (I=-1; <= 1; [++) {
if flows_into(i+k, [+, 1,j)
f += compute_flow(i+k, j+l);
}/[for Kk

V//[for |
return f;

Computing FA: naive algorithm (2)

//return 1 if cell (a,b) flows into cell (x,y)
/[that is, if (a,b)’s FD points towards (X,y)
int flows_into(a,b, x,y) {

if (linside_grid(a,b)) return O;

//do it for all
for (i=0; i<nrows; i++) }
for (j=0; j<ncols; j++) /[return the flow of cell (i,j)

flow[i][j] =compute_flow(i)); void compute_flow(i,j) {
assert(inside_grid(i,)));

intf=0; //initial flow at (i,])

for (k=-1; k<= 1; k++) {
for (I=-1; I<=1; [++) {
e Questions: if flows_into(i+k, j+I, i,j)
f += compute_flow(i+k, j+l);

 What is the worst case running time?
}/[for k

* What sort of FD graph would trigger titor
worst-case? return f;

e |sitlinear?

Computing FA: naive algorithm (2)

//return 1 if cell (a,b) flows into cell (x,y)
/[that is, if (a,b)’s FD points towards (X,y)
int flows_into(a,b, x,y) {

if (linside_grid(a,b)) return O;

//do it for all
for (i=0; i<nrows; i++) }
for (j=0; j<ncols; j++) /[return the flow of cell (i,j)

flow[i][j] =compute_flow(i)); void compute_flow(i,j) {
assert(inside_grid(i,)));

intf=0; //initial flow at (i,])

for (k=-1; k<= 1; k++) {
for (I=-1; I<=1; I++) {
if flows_into(i+k, [+, 1,j)

worst-case f += compute_flow(i+k, j+I);
running time }/for k
Theta(n?) H/for |
return f;

Flow accumulation: smarter algorithms?

e |deas”?

n = nb. of
Flow accumulation: smarter algorithms? cells in the grid

Use recursion, but once a value flow(i,]) is computed, store it in a table. This
avoids re-computation.

e dynamic programming!

e To completely avoid recursion, compute flow(i,j) in topological order of FD
graph

e topological order can be computed in linear time

e Or: sort by height, but that's O(n Ilg n)

Analysis?

Which one would you chose in practice?

