
Spatial data:
 Models and representation

Laura Toma

Bowdoin College

Algorithms for GIS

(part II)

networks terrainsplanar mapspoints

raster or TINgraphs
topological data structures
(winged edge, half edge)

Spatial data representation

• Last time we discussed networks and terrains

• Today we look at planar maps

digital hydrologic unit boundary layer (clipped at New Jersey political boundaries)

www.state.nj.us

Planar maps

http://www.state.nj.us/dep/gis/stateshp.html

cadastral data

Planar maps

http://www.myinterestingfacts.com/wp-content/uploads/2014/11/Plate-Tectonics-Facts.jpg

Planar maps

http://www.myinterestingfacts.com/wp-content/uploads/2014/11/Plate-Tectonics-Facts.jpg

Planar maps

http://mapsof.net/uploads/static-maps/mexico_us_border_counties.png

Planar maps

http://mapsof.net/uploads/static-maps/mexico_us_border_counties.png

Planar maps

• Triangulations: a special type of
planar map

• Let P be a set of points in the plane.

• A triangulation T(P) is a partition of the
plane into regions such that all
regions are triangles.

one possible triangulation of P

• Triangulations: a special type of
planar map

• Let P be a set of points in the plane.

• A triangulation T(P) is a partition of the
plane into regions such that all
regions are triangles.

Planar maps

Data structures for planar maps

• What do we expect to do on a map?
• walk from edge to a neighboring edge
• walk from face to a neighbor face
• walk along the boundary of a face
• …

• In order to be efficient, a data structure must store the topology
• Studied in the context of meshing

• triangulations vs TIN terrains (triangular meshes)
• planar maps vs polygonal meshes

triangular terrain meshes

triangulations

• The 2D projection of a triangulated terrain is
a triangulation.

terrain meshes

triangulations planar maps

http://pre09.deviantart.net/bcb0/th/pre/f/2007/264/e/a/terrain_mesh_by_sordith.jpg

triangular terrain meshes

http://pre09.deviantart.net/bcb0/th/pre/f/2007/264/e/a/terrain_mesh_by_sordith.jpg

Meshing

• Meshes are not necessarily triangular
• rectangular meshes, hexagonal

meshes, ..

• Used to represent arbitrary surfaces in
3D (not necessary terrains)

• Big research area

http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_mesh_images/trike.jpg

http://glasnost.itcarlow.ie/~powerk/GeneralGraphicsNotes/meshes/polygon_mesh_images/trike.jpg

Meshing

http://previewcf.turbosquid.com/Preview/2014/05/25__02_45_53/Vader_Wireframe.jpg5a0d1bb5-8efa-406f-bd61-31f60014f57eLarge.jpg

• Meshes are not necessarily triangular
• rectangular meshes, hexagonal

meshes, ..

• Used to represent arbitrary surfaces in
3D (not necessary terrains)

• Big research area

• On large meshes speed is critical ==>
need efficient data structures

http://previewcf.turbosquid.com/Preview/2014/05/25__02_45_53/Vader_Wireframe.jpg5a0d1bb5-8efa-406f-bd61-31f60014f57eLarge.jpg

http://www.jrbassett.com/images/TFg3d0.JPGTIE fighter

http://www.jrbassett.com/images/TFg3d0.JPG

https://0.s3.envato.com/files/316771.jpg

http://previewcf.turbosquid.com/Preview/2014/07/07__15_44_27/mesh%202.jpg42209060-b29e-4876-8cd3-8ce8339529e4Large.jpg

https://0.s3.envato.com/files/316771.jpg
http://previewcf.turbosquid.com/Preview/2014/07/07__15_44_27/mesh%202.jpg42209060-b29e-4876-8cd3-8ce8339529e4Large.jpg

Data structures for polygonal meshes

• First attempt:
• list of vertices; each vertex stores in coordinates
• list of face, each face storing pointers to its vertices

• Ok for some application (maybe), but does not store the topology
• e.g. how do we walk from one face to another in this mesh?
• which faces use this vertex?
• which faces border this edge?
• which edges border this face?
• which faces are adjacent to this face?

• Winged-edge data structure [Baumgart]
• lists of vertices, edges and faces

• each vertex stores:
• its coordinates
• a pointer to one edge incident to this vertex

• each face stores:
• a pointer to one edge along the boundary of this face

• each edge stores
• pointers to its two vertices
• pointers to its left and right faces
• predecessor and successor of this edge when traversing its left face
• predecessor and successor of this edge when traversing its right face

Note: direction of an edge only used to establish left and right; each face oriented
clockwise; the 4 edges are the wings.

e1

a

be2

e4 e5

e3

f1 f2

• Questions: size..? how many bytes per edge?…total?

Winged-edge data structure

Winged-edge data structure

• Can answer adjacency queries
• list edges and vertices on a face.

• how?
• list all edges incident on a vertex

• how
• are two faces adjacent?

• how?
• etc

• Not all queries are O(1)

• Does not work for surfaces with holes
• can be fixed e.g. by being careful how you orient the boundary…

• Links:
• http://www.baumgart.org/winged-edge/winged-edge.html

e1

a

be2

e4 e5

e3

f1 f2

http://www.baumgart.org/winged-edge/winged-edge.html

Half-edge data structure

• Half-edge data structure
• an edge = a pair of half edges
• the half edges that border a face form a circular list
• assume all faces are oriented the same way (eg cw)

• each vertex stores:
• its coordinates
• a pointer to exactly one half edge starting from this

vertex
• each face stores:

• a pointer to one of the half-edges that borders it
• each half-edge stores:

• a pointer to the face it borders
• a pointer to its endpoint
• a pointer to twin half-edge
• a pointer to next half-edge around the face

http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

• Questions: size..? how many bytes per edge?…total?

Half-edge data structure

//from http://www.flipcode.com/archives/The_Half-
Edge_Data_Structure.shtml

struct HE_edge

{

 HE_vert* vert; // vertex at the end of the half-edge
 HE_edge* pair; // oppositely oriented adjacent half-edge
 HE_face* face; // face the half-edge borders
 HE_edge* next; // next half-edge around the face

};

struct HE_edge

{

 HE_vert* vert; // vertex at the end of the half-edge
 HE_edge* pair; // oppositely oriented adjacent half-edge
 HE_face* face; // face the half-edge borders
 HE_edge* next; // next half-edge around the face

};

 struct HE_vert {

 float x;
 float y;
 float z;

 HE_edge* edge; // one of the half-edges emantating from the
vertex

};

struct HE_face {

 HE_edge* edge; // one of the half-edges bordering the face

};

http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

http://www.flipcode.com/archives/The_Half-Edge_Data_Structure.shtml

Half-edge data structure

Can answer adjacency queries:

• Find the vertices of a half-edge e
e->vert, and e->twin->vert

• Find the two faces that border half-edge e
e->face, e->twin->face

• Iterate the edges along a face f
 e = f->edge
 do {

…
e = e->next

} while (e != f->edge)

• Iterate over the edges adjacent to a vertex v
e = v->edge;
 do {

…
e = e->next

} while (e != v->edge)

• are two faces adjacent?

• are two vertices adjacent?

• what are all faces that use this vertex ?

Topological structures for polygonal meshes

• Support basic adjacency operations fast
• But

• use a lot of space !!!
• need to be constructed from raw data
• involve complex programming

e1

a

be2

e4 e5

e3

f1 f2

Summary
networks terrainsplanar mapspoints

• Two fundamentally different models
• Vector data: points, lines, polygon + data structures
• Raster data: matrix of values

raster or TINgraphs
topological data structures
(winged edge, half edge)

