
Spatial data: 
 Models and representation

Laura Toma

Bowdoin College

Algorithms for GIS

(part I)



Outline

Spatial data  in GIS applications 
• Point data  
• Networks  
• Terrains 
• Planar maps and meshes  

• Data structures and representation  
• Networks  
• Terrains:  raster and TIN  
• Next time: Planar maps and meshes: winged-edge, half-edge 



Spatial data in GIS
networks

terrainsplanar maps

point data



Spatial data in GIS

networks terrainsplanar maps

Suppose we have to solve a problem on networks/maps/terrains 
• Find optimal routes  
• Find all polygons neighboring the coast   
• Model impact of a volcano explosion  

What is a good representation? 

points



Networks



Data structures for networks  

• What do we expect to do with a network?  
• traverse paths 
• find all vertices adjacent to a given vertex,…



• First attempt  
• list of points, each point stores its coordinates 
• list of segments, each segment stores pointers to its vertices

Data structures for networks  

a

b
c

d

s1 s2
s3



• points = { a:(xa, ya),  b:(xb, yb), c:(xc, yc), d:(xd, yd) } 
• segments = { (a, b), (b,c), (c,d) } 
• Assume you want to traverse a path starting at point a:  

• search through the segment list looking for a segment with startpoint a; you find (a,b) 
• search through the segment list looking for another segment with startpoint b; you find (b,c)

• First attempt  
• list of points, each point stores its coordinates 
• list of segments, each segment stores pointers to its vertices

Data structures for networks  

a

b
c

d

s1 s2
s3



• First attempt  
• list of points, each point stores its coordinates 
• list of segments, each segment stores pointers to its vertices

Data structures for networks  

a

b
c

d

s1 s2
s3

Spaghetti data structure (like spaghetti, no structure and they all mingle together) 

Not efficient. Need a data structure that allows to traverse paths efficientl. 



• Second attempt  
• a network is a graph! 
• use adjacency list (matrix, if dense)

Data structures for networks  

a

b
c

d

s1 s2
s3

• In practice, this graph needs to be built  
• You got raw data   
• Build the adjacency list corresponding to raw data 



Exercise

Assume you download US road data. It comes as a file that might have the 
following format  

- first all the vertices and their geometric coordinates 
- then all edges, where an edge is given through the indices of its vertices.  

Describe how you would build an adjacency list from it.  

Estimate the amount of memory you need for your structure. 

Analyze function of |V| vertices and |E| edges.

(1.1, 2.3)   

(3.4, 2.1) 

(2.6, 1.8) 

(1.4,8.2) 
(0,1) 
(1,2) 
(2,3)



Terrains



• A terrain is modeled as a function of two variables, z(x,y) 
• z can be elevation, rainfall, population, solar radiation, … 
• For any point (x,y) there is a unique value z(x,y).  Put differently, any 

vertical line intersects it in at most one point 



• In practice, terrain data comes as a set of sample points {(x,y)} and their 
sampled z value 

• Want a digital terrain model 
• sample points + interpolation method + representation 

Digital terrain models

pictures from Herman Haverkort



• In practice, terrain data comes as a set of sample points {(x,y)} and their 
sampled z value 

• Want a digital terrain model 
• sample points + interpolation method + representation 

Digital terrain models

?

pictures from Herman Haverkort





Digital Terrain Models:

 Rasters and TINs



Terrain as a grid (raster)

• Samples 
• uniform grid  

• Representation 
• 2D array of values 

• Interpolation method 
• nearest neighbor, linear, bilinear, splines, krigging, IDW,  etc



Interpolating grids



?

Interpolating grids



20

Nearest neighbor interpolation



?

Nearest neighbor interpolation



27

Nearest neighbor interpolation



Nearest neighbor interpolation



20

Nearest neighbor interpolation



20

Grids with nearest neighbor interpolation



?

Linear interpolation



?

Linear interpolation



?

Linear interpolation



Terrain:  mesh of triangles 
on the grid points

Grids with linear interpolation



• Grid data easy to obtain from aerial imagery  
• image: grid  of color pixels 
• SAR interferometry: by combining Synthetic Aperture Radar (SAR) images 

of the same area it is possible to generate elevation maps 
• massive amounts of aerial imagery available 

Grids



• USGS  
•   http://earthexplorer.usgs.gov 

• SRTM 90m elevation data for entire world 
• http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp 
• can download tiles anywhere in the world 
• SRTM 30m data available for the entire USA (50+GB) 

• Grid elevation from LiDAR  
• below 2m resolution  
• Huge!  

• Grids available in arc-ascii format 

Grid elevation data sources

http://earthexplorer.usgs.gov
http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp


Grid arc-ascii format 

ncols         391
nrows         472
xllcorner     271845
yllcorner     3875415
cellsize      30
NODATA_value  -9999
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 781 773 766 761 756 751 745 738 730 723 716 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 775 767 759 754 750 746 741 735 728 721 714 709 705 700 696 694 693 692 
691 690 691 692 696 701 707 714 722 728 732 733 731 726 721 718 718 722 729 737 746 755 761 764 762 760 760 759 754 748 741 733 725 718 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 
-9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 -9999 770. . . . . . . 



Consider an area of 300km by 300km to be represented as a grid.  

How big (how many points) is the grid at:  

A.  100m resolution 

B.  10m resolution 

C.   1m resolution

Exercise



      
Terrain as a TIN (triangulated irregular network)

• Samples 
• points arbitrarily distributed, variable resolution  

• Interpolation method 
• linear 

• Representation 
• triangular mesh Data structure for triangular meshes?



Grid or TIN? 



• Pros:  
• implicit topology 
• implicit geometry 
• simple algorithms 
• readily available in this form  

• Cons:  
• uniform resolution ==> space 

waste 
• space becomes prohibitive as 

resolution increases

• Pros:  
• variable resolution 
• potentially space efficient 

• Cons:  
• representation ??? 

• More complicated algorithms

How do we store a TIN ???

Grid TIN



Assume we have a grid for an area of  300km by 300km at 1m resolution. 
The elevation values are represented as floating point numbers.  

A. How much space does the grid use, in GB? 

B. Assume the grid undergoes a process of simplification, so that 90% 
of the grid points are eliminated, leaving 10% of the points. These 
points are represented as a TIN.  How much space (in GB) does the 
TIN need? 

Digital terrain models: Grid or TIN ? 



Assume we have a grid for an area of  300km by 300km at 1m resolution. 
The elevation values are represented as floating point numbers.  

A. How much space does the grid use, in GB? 

B. Assume the grid undergoes a process of simplification, so that 90% 
of the grid points are eliminated, leaving 10% of the points. These 
points are represented as a TIN.  How much space (in GB) does the 
TIN need? 

Digital terrain models: Grid or TIN ? 

• We need to know  
• How do we store a TIN  
• How many triangles and edges as function of number 

of points 



Data structures for TINs

What do we expect to do on a TIN? 
• walk along an edge/triangle path 
• given an edge, find the two faces that are 

adjacent to this edge 
• walk along the boundary of a face (triangle) 
• find all edges and all triangles incident to a point

A good data structure for TINs  
should do all these fast



Edge-based
• arrays of vertices, edges and 

triangles 
• every vertex stores:  

• its coordinates 
• every edge stores:  

• 2 references to its adjacent 
vertices 

• 2 references to its adjacent 
triangles 

• every triangle stores: 
• 3 references to its 3 edge 

Triangle-based
• arrays of vertices and triangles 

(edges are not stored explicitly) 
• every vertex stores:  

• its coordinates 
• every triangles stores:  

• 3 references to its incident 
vertices 

• 3 references to its adjacent 
triangles 

• Note: CGAL uses triangle-based

• These are simplified versions of more general structures

(Topological) data structures for TINs



Edge-based
• arrays of vertices, edges and 

triangles 
• every vertex stores:  

• its coordinates 
• every edge stores:  

• 2 references to its adjacent 
vertices 

• 2 references to its adjacent 
triangles 

• every triangle stores: 
• 3 references to its 3 edge 

Triangle-based
• arrays of vertices and triangles 

(edges are not stored explicitly) 
• every vertex stores:  

• its coordinates 
• every triangles stores:  

• 3 references to its incident 
vertices 

• 3 references to its adjacent 
triangles 

• Note: CGAL uses triangle-based

• These are simplified versions of more general structures

(Topological) data structures for TINs

geometry



Triangle-based
• arrays of vertices and triangles 

(edges are not stored explicitly) 
• every vertex stores:  

• its coordinates 
• every triangles stores:  

• 3 references to its incident 
vertices 

• 3 references to its adjacent 
triangles 

• Note: CGAL uses triangle-based

Edge-based
• arrays of vertices, edges and 

triangles 
• every vertex stores:  

• its coordinates 
• every edge stores:  

• 2 references to its adjacent 
vertices 

• 2 references to its adjacent 
triangles 

• every triangle stores: 
• 3 references to its 3 edge 

(Topological) data structures for TINs

• These are simplified versions of more general structures

topology



Data structures for TINs

edge-based triangle-based



Assume we have a triangulation with n points.   

How much memory do we need to store it  in a topological structure?  
• edge-based   
• triangle-based

Denote  
• e = number of edges 
• f = number of triangles (faces)



Assume we have a triangulation with n points.   

How much memory do we need to store it  in a topological structure?  
• edge-based   
• triangle-based

Denote  
• e = number of edges 
• f = number of triangles (faces)

Turns out there is a formula that gives e and f  as function of n!



Detour

Definition:  

A graph is called planar if it can be drawn in the plane such that no two edges intersect 
except at their endpoints. Such a drawing is called a planar embedding of the graph. 



Detour

Definition:  

A graph is called planar if it can be drawn in the plane such that no two edges intersect 
except at their endpoints. Such a drawing is called a planar embedding of the graph. 

Two drawings of the same graph.  

Since there exists a planar embedding, the graph is planar.   

Note that it is possible to draw non-planar embeddings of planar graphs. 



Detour

Definition:  

A graph is called planar if it can be drawn in the plane such that no two edges intersect 
except at their endpoints. Such a drawing is called a planar embedding of the graph. 

http://people.hofstra.edu/geotrans/eng/methods/img/planarnonplanar.png

Note: Edges can be represented as simple curves in the drawing

http://people.hofstra.edu/geotrans/eng/methods/img/planarnonplanar.png


Detour

A planar graph introduces a subdivision of the plane into regions called faces, 
which are polygons bounded by the graph’s edges. 



Detour

Some results: 

• Any planar graph has a planar straight-line drawing where edges do not intersect [Fary’s 
theorem]. 

• A graph is planar iff it has no subgraphs isomorphic with K5 or K3,3 [Kuratowski’s theorem].  

• A graph is planar iff it has a dual graph. 

• Any planar graph has at least one vertex of degree <= 5.  

• There are a number of efficient algorithms for planarity testing that run in o(n3), but are 
difficult to implement. 



Detour

Euler formula:  

The following relation exists between the number of edges, vertices and faces 
in a connected planar graph:  v - e + f = 2. 

• Notes:  
• For c connected components:  v - e + f - c =1  
• Also true for any convex polyhedral surface in 3D 
• The Euler characteristic X= v - e + f  is an invariant that describes the 

shape of space; it is X=2 for planar graphs, convex polyhedra,etc; can be 
extended to topological spaces. 



Detour

• From Euler formula we know n-e+f = 2 
• Furthermore, each triangle has 3 edges and each edge is in precisely 2 

triangles (assuming the outside face is a triangle). This means 3f = 2e. 
• We get:  

• the number of faces in a  triangulation with n vertices is f = 2n-4 
• the number of edges in a triangulation with n vertices is e = 3n-6 

• If the outside face is not triangulated it can be shown that  
• e < 3n-6,  f < 2n-4 

• Intuition: Given n points, the planar graph with largest number of edges and 
faces is a complete triangulation.

Theorem:  

A triangulation with n vertices has at most 3n-6 edges and at most 2n-4 faces. 

n = nb of points in the TIN



Assume we have a triangulation with n points.   

How much memory do we need to store it  in a topological structure?  
• edge-based   
• triangle-based



Assume we have a grid for an area of  300km by 300km at 1m resolution. 
The elevation values are represented as floating point numbers.  

A. How much space does the grid use, in GB? 

B. Assume the grid undergoes a process of simplification, so that 90% 
of the grid points are eliminated, leaving 10% of the points. These 
points are represented as a TIN.  How much space (in GB) does the 
TIN need? 

Digital terrain models: Grid or TIN ? 

• We need to know  
• How do we store a TIN  
• How many triangles and edges as function of number 

of points 



Grid or TIN? 

• Pros:  
• implicit topology 
• implicit geometry 
• simple algorithms 
• readily available in this form  

• Cons:  
• uniform resolution ==> space 

waste 
• space becomes prohibitive as 

resolution increases

• Pros:  
• variable resolution 
• potentially space efficient 

• Cons:  
• need to built and store topology 
• stored topology takes space 
• more complex programming 

(pointers..);  

Grid TIN


