Algorithms for GIS

Programming in C:
Pointers, header files and multiple files

Laura Toma

Bowdoin College

Outline

e Programming in C
 Pointers
« .hand .cfiles

 Compiling

Working with multiple files

Using Makefiles

 Programming exercise

Pointers

T X;

 Any variable is stored somewhere in memory and thus has an address, which can be
retrieved with operator &

&x gives the address of variable x
 An address is called a pointer
 The address of a variable of type T is considered to have type T*

&xX has type T%;

Given an address, we might want to know what is stored at that address. That'’s called
dereferencing the pointer, and it is done with operator *

T* p;

*pis of type T, and it is the value stored at address p

of Caveat: Dereferencing an invalid address is a BUG.

A bug of this type doesn’t always manifest, and does not manifest in the same way. That
s, it might give you a segfault. Or not. Still, your program has a bug in it and its behavior
IS unpredictable.

Pointers

 Rule: make sure a pointer is valid before you dereference it
e by assigning it the address of a variable
* Dby calling malloc()

e by assigning it the value of another valid pointer

Pointers

 Rule: make sure a pointer is valid before you dereference it
e by assigning it the address of a variable
* Dby calling malloc()

e by assigning it the value of another valid pointer

e Perhaps this is boring.. Consider this.
 You WILL get segfaults
* You will spend a LONG time figuring it out
« |t's ALWAYS because you break this one rule

Pointers

 Rule: make sure a pointer is valid before you dereference it
e by assigning it the address of a variable
* Dby calling malloc()

e by assigning it the value of another valid pointer

e Perhaps this is boring.. Consider this.
 You WILL get segfaults
* You will spend a LONG time figuring it out
« |t's ALWAYS because you break this one rule

 And remember,
« Bad memory references do not always manifest

 The program might work fine on one computer, but not on other.

Exercise

 We want to write a function to allocate an array of n element of type T
 We'll write it two ways:
1. return the array

2. take the array as parameter

Do both work?

T* create(int n) { void create(int n, T* a) {
T* result; a = (T*) malloc(n*sizeof(T));
result = (T*)malloc(n*sizeof(T)); assert(a);
assert(result); }

return result;

}
int n=100; int n=100;
T* X; T X;

x = create(n): create(n, Xx);

Why doesn't this work??

void create(int n, T* a) {

a = (7T%) malloc(n*sizeof(T));

assert(a);
}
int n=100;
T X;

create(n, Xx);

Why doesn't this work?

 ais set correctly inside create()

* But, it's value does not change outside the function

Exercises

* Implement this and get a feel for how this bug
manifests. Can you find some instances where the
program runs seemingly well? What does this show?

Can you make it crash?

e Fixit!

void create(int n, T* a) {
a = (7*) malloc(n*sizeof(T));

assert(a);
}
int n=100;
T X;

create(n, Xx);

C programming

« (gives a lot of freedom for bad style

 Debugging can be hell. Really.

 (Good practices
 Modularize
e Separate interface from implementation
 Program with asserts.
e Unit testing: Write test modules for EVERYTHING
e Structure your code assuming there are tests for everything

e This will change how you design your code

Header files

/% 1ist.h */

Header flleS typedef struct node_t {

int data;
struct node_t* next;

}

typedef struct Tist_t {

o - : Node* head;
Example: implement a linked list } List:

. listh:

|

| List* init();

s the interface to the outside
world

e contains type definitions and
signature of functions that are
meant to be used by other

,‘ modules

e Jist.c:
\ . . . [
ﬂl implements all functions in list.h '

/% list.c */

#include “list.h”

List* init(Q) {
//implement 1nit

}

Working with multiple files

Working with multiple files

/* test.c */

#include “test.h”
#include “list.h”

int main() {

}

 |[ftest.c needs to use some list functions

e #include “list.h”

Working with multiple files

Compilation has 2 phases

compile only (gcc -c): each xxx.c file ==> xxx.o file

for each file that contains a main():

link the .o files of the headers that it needs to
create the executable

/* test.c */

#include “test.h”
#include “list.h”

int main() {

}

gcc -c list.c -o list.o
gcc -c test.c -0 test.o
gcc list.o test.o -0 test
Jtest

Working with multiple files

/* test.c */

#include “test.h”
#include “list.h”

int main() {

}

gcc -c list.c -o list.o
gcc -c test.c -0 test.o
gcc list.o test.o -0 test
Jtest

test.o has a symbol table with
external functions, but no info
on where they are defined

Working with multiple files

/* test.c */

#include “test.h”
#include “list.h”

int main() {

}

gcc -c list.c -o list.o
gcc -c test.c -0 test.o
gcc list.o test.o -0 test
Jtest

test.o has a symbol table with
external functions, but no info
on where they are defined

link phase links the files
together and fills in the
addresses of functions in the

symbol table

Complex dependency graph

/* ww.c */

#include “xx.h”
#include “yy.h”
.|#include “zz.h”

« Each file must include all headers it needs
* The dependency graph cannot have cycles

* |fit has cycles ==> very weird compile errors

Complex dependency graph

/* ww.c */

#include “xx.h”
#include “yy.h”
_.+|#include “zz.h”

Why"?

* For efficiency
 compiling large projects is slow

e if change one line in a file, you re-compile only the object files and
executables that depend on it, directly or indirectly

 make utility
 Makefile specifies dependencies

 ‘make’ keeps track of when files were last modified ==> figures out what
changed and what needs to be recompiled

