/*

*/
#1
#1i
#1
#1

#d

in

iobasic.c

Demonstrates the effect of the memory hierarchy and the limitations
of the RAM model.

The RAM model assumes that all memory accesses take the same and
defines

complexity = CPU complexity = nb. CPU operations

When working with large data the cache and IO behaviour (nb. cache
misses/page faults) are relevant and may actually be dominant.
Theoretically this is modeled by

cache complexity = nb blocks transferred between cache and main
memory

I0 complexity = nb blocks transferred between main memory and disk

nclude <stdio.h>
nclude <time.h>
nclude <assert.h>
nclude <stdlib.h>

efine PRINT if(@)
t main(int argc, char** argv) {

clock_t t1, t2;
if Cargc '=2) {
printf("usage: %s [n]\n", argv[@]);
exit(l);
}
long n = atol(Cargv[1]);
printf("n=X%ld (%.1f G) ints which require %.1f GB RAM\n",
n,
(float)n/(1<<30),
(float)n*sizeof(int)/(1<<30));

//allocate and initialize
tl = clock();
printf("%30s", "allocate and initialize a: ");

int* a = (int*)malloc(n * sizeof(int));
assert(a);
for (long i=0; i<n; i++) {
a[il=1i;
ks
t2 = clock();
printf("time elapsed %.3f seconds\n", (double)(t2-t1)/CLOCKS_PER_SEQ);

//SEQUENTIAL ACCESS ARRAY A
int sum = 0;
tl = clock();
printf("%30s", "sequential access: ");
printf("\n");
for (long i=0; i<n; i++) {
sum =Csum + a[i])%2;

//print % progress
PRINT {if (i% (n/100) ==0) printf("%d %% ", (int) (i/(n/100)));
fflush(stdout);}

}
t2 = clock();
printf("\n%30s time elapsed %.3f seconds\n", " ", (double)(t2-

t1)/CLOCKS_PER_SEC);

//RANDOM ACCESS ARRAY A

tl = clock(Q);

printf("%30s", "random access: ");

printf("\n");

for (long 1=0; i<n; i++) {
//generate a random index in @..n
long k = random() % n;
sum =Csum + a[i])%2;

//print % progress
PRINT { if (i% (n/100) ==0) printf("%d %% ", (int)
(1/(n/100))); fflush(stdout);}

}
t2 = clock();
printf("\n%30s time elapsed %.3f seconds\n"," ", (double)(t2-

t1)/CLOCKS_PER_SEC);

return 0;

}

